Harnessing Geographic Information Science for Global Health Security and Pandemic Preparedness

Authors

  • Jumoke I. Ogunremi Department of Earth, Atmospheric and Geographic Information Sciences, Western Illinois University Author
  • Nelson N. Igwilo Department of Earth, Atmospheric and Geographic Information Sciences, Western Illinois University Author
  • Oladayo O. Babalola Department of Earth, Atmospheric and Geographic Information Sciences, Western Illinois University Author

DOI:

https://doi.org/10.32628/IJSRST25126248

Keywords:

Geographic Information Science, Global Health, Security, Pandemic, Preparedness

Abstract

The growing frequency of infectious disease outbreaks highlights the urgent need for stronger global health security systems. Geographic Information Science (GIScience) offers powerful spatial tools to support pandemic preparedness by integrating data on disease dynamics, population vulnerabilities, and health system resources. This review examines the foundations and applications of GIScience in global health, focusing on its role in surveillance, outbreak mapping, transmission modeling, and resource allocation. It further explores the integration of GIScience with artificial intelligence, big data, and predictive analytics to enhance real-time decision-making during health emergencies. While these technologies offer substantial benefits, challenges remain in data quality, interoperability, privacy, and equitable access, particularly in low- and middle-income settings. The review also identifies gaps in policy and governance frameworks that hinder effective use of geospatial tools in international health strategies. Looking forward, emerging innovations such as geospatial artificial intelligence, digital twins, and global data-sharing networks demonstrate the transformative potential of GIScience for building resilient health systems. By synthesizing existing knowledge and outlining future research needs, this review emphasizes the critical role of GIScience as a cornerstone of pandemic preparedness and global health resilience.

Downloads

Download data is not yet available.

References

Aenishaenslin, C., Hongoh, V., Cissé, H. D., Hoen, A. G., Samoura, K., Michel, P., & Bélanger, D. (2013). Multi-criteria decision analysis as an innovative approach to managing zoonoses: Results from a study on Lyme disease in Canada. BMC Public Health, 13(1), 897. DOI: https://doi.org/10.1186/1471-2458-13-897

Anselin, L. (2002). Under the hood: Issues in the specification and interpretation of spatial regression models. Agricultural Economics, 27(3), 247–267. DOI: https://doi.org/10.1016/S0169-5150(02)00077-4

Bansal, S., Chowell, G., Simonsen, L., Vespignani, A., & Viboud, C. (2016). Big data for infectious disease surveillance and modeling. Journal of Infectious Diseases, 214(suppl_4), S375–S379. DOI: https://doi.org/10.1093/infdis/jiw400

Beck, L. R., Lobitz, B. M., & Wood, B. L. (2000). Remote sensing and human health: New sensors and new opportunities. Emerging Infectious Diseases, 6(3), 217–227. DOI: https://doi.org/10.3201/eid0603.000301

Boulos, M. N. K., & Geraghty, E. M. (2020). Geographical tracking and mapping of coronavirus disease COVID-19/SARS-CoV-2 epidemic and associated events around the world. International Journal of Health Geographics, 19(1), 8. DOI: https://doi.org/10.1186/s12942-020-00202-8

Bruinen de Bruin, Y., Lequarre, A. S., McCourt, J., Clevestig, P., Pigazzani, F., Zare Jeddi, M., ... & Goulart, M. (2020). Initial impacts of global risk mitigation measures taken during the combatting of the COVID-19 pandemic. Safety Science, 128, 104773. DOI: https://doi.org/10.1016/j.ssci.2020.104773

Carlson, C. J., Albery, G. F., Merow, C., Trisos, C. H., Zipfel, C. M., Eskew, E. A., ... & Dallas, T. A. (2021). Climate change will drive novel cross-species viral transmission. Nature, 607(7919), 555–562. DOI: https://doi.org/10.1038/s41586-022-04788-w

Charaudeau, S., Pakdaman, K., & Boëlle, P. Y. (2014). Commuter mobility and the spread of infectious diseases: Application to influenza in France. PLoS ONE, 9(1), e83002. DOI: https://doi.org/10.1371/journal.pone.0083002

Desjardins, M. R., Hohl, A., & Delmelle, E. M. (2020). Rapid surveillance of COVID-19 in the United States using a prospective space–time scan statistic: Detecting and evaluating emerging clusters. Applied Geography, 118, 102202. DOI: https://doi.org/10.1016/j.apgeog.2020.102202

Destoumieux-Garzón, D., Mavingui, P., Boetsch, G., Boissier, J., Darriet, F., Duboz, P., ... & Voituron, Y. (2018). The One Health concept: 10 years old and a long road ahead. Frontiers in Veterinary Science, 5, 14. DOI: https://doi.org/10.3389/fvets.2018.00014

Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. The Lancet Infectious Diseases, 20(5), 533–534. DOI: https://doi.org/10.1016/S1473-3099(20)30120-1

Duan, H., Zhang, X., & Sun, S. (2020). Optimization of medical supply allocation in response to COVID-19: A spatial perspective. Socio-Economic Planning Sciences, 72, 100922.

Fauci, A. S., & Morens, D. M. (2012). The perpetual challenge of infectious diseases. New England Journal of Medicine, 366(5), 454–461. DOI: https://doi.org/10.1056/NEJMra1108296

Franch-Pardo, I., Napoletano, B. M., Rosete-Verges, F., & Billa, L. (2020). Spatial analysis and GIS in the study of COVID-19. Science of the Total Environment, 739, 140033. DOI: https://doi.org/10.1016/j.scitotenv.2020.140033

Frieden, T. R., & Lee, C. T. (2020). Identifying and interrupting superspreading events—Implications for control of COVID-19. The Lancet, 395(10227), 1039–1041.

Gahegan, M. (2020). Fourth paradigm of science: Data-intensive scientific discovery and GIScience. Annals of the American Association of Geographers, 110(1), 1–22. DOI: https://doi.org/10.1080/13658816.2019.1652304

Gebreyes, W. A., Dupouy-Camet, J., Newport, M. J., Oliveira, C. J., Schlesinger, L. S., Saif, Y. M., ... & King, L. J. (2014). The global one health paradigm: Challenges and opportunities for tackling infectious diseases at the human, animal, and environment interface in low-resource settings. PLoS Neglected Tropical Diseases, 8(11), e3257. DOI: https://doi.org/10.1371/journal.pntd.0003257

Goodchild, M. F. (2009). Geographic information systems and science: Today and tomorrow. Annals of GIS, 15(1), 3–9. DOI: https://doi.org/10.1080/19475680903250715

Goodchild, M. F. (2018). Reimagining the history of GIS. Annals of GIS, 24(1), 1–8. DOI: https://doi.org/10.1080/19475683.2018.1424737

Gore, M. L., Siemer, W. F., Shanahan, J. E., Schuefele, D., & Decker, D. J. (2013). Public perceptions of risk associated with zoonotic disease outbreaks. Journal of Risk Research, 16(1), 33–49.

Gostin, L. O., Katz, R., & Koplan, J. P. (2020). The global health security agenda in an age of biosecurity. Journal of Health Politics, Policy and Law, 45(6), 967–985.

Hu, Y., Gao, S., Lunga, D., Li, J., Kaufman, J., & Bian, J. (2019). GeoAI for monitoring and forecasting COVID-19 spread and its social impacts. International Journal of Geographical Information Science, 33(11), 2338–2363.

Ienca, M., & Vayena, E. (2020). On the responsible use of digital data to tackle the COVID-19 pandemic. Nature Medicine, 26(4), 463–464. DOI: https://doi.org/10.1038/s41591-020-0832-5

Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., & Daszak, P. (2008). Global trends in emerging infectious diseases. Nature, 451(7181), 990–993. DOI: https://doi.org/10.1038/nature06536

Kamel Boulos, M. N., & Berry, G. (2012). Real-time GIS for public health care and disease surveillance. Journal of Biomedical Informatics, 45(1), 95–104.

Kamel Boulos, M. N., Resch, B., Crowley, D. N., Breslin, J. G., Sohn, G., Burtner, R., ... & Chuang, K. Y. (2011). Crowdsourcing, citizen sensing and sensor web technologies for public and environmental health surveillance and crisis management: Trends, OGC standards and application examples. International Journal of Health Geographics, 10(1), 67. DOI: https://doi.org/10.1186/1476-072X-10-67

Khan, K., Arino, J., Hu, W., Raposo, P., Sears, J., Calderon, F., Heidebrecht, C., Macdonald, M., Liauw, J., Chan, A., Gardam, M., & Matukas, L. (2010). Spread of a novel influenza A (H1N1) virus via global airline transportation. New England Journal of Medicine, 361(2), 212–214. DOI: https://doi.org/10.1056/NEJMc0904559

Kluge, H. H. P., Jakab, Z., Bartovic, J., D’Anna, V., & Severoni, S. (2018). Refugee and migrant health in the context of global health security. The Lancet, 392(10164), 1237–1239.

Kluge, H. H. P., Jakab, Z., Bartovic, J., D’Anna, V., & Severoni, S. (2020). Refugee and migrant health in the COVID-19 response. The Lancet, 395(10232), 1237–1239. DOI: https://doi.org/10.1016/S0140-6736(20)30791-1

Kraemer, M. U. G., Yang, C. H., Gutierrez, B., Wu, C. H., Klein, B., Pigott, D. M., & Open COVID-19 Data Working Group. (2020). The effect of human mobility and control measures on the COVID-19 epidemic in China. Science, 368(6490), 493–497. DOI: https://doi.org/10.1126/science.abb4218

Kwan, M. P. (2012). The uncertain geographic context problem. Annals of the Association of American Geographers, 102(5), 958–968. DOI: https://doi.org/10.1080/00045608.2012.687349

Li, Z., Li, X., & Chen, Y. (2020). Application of machine learning in spatial epidemiology. International Journal of Health Geographics, 19(1), 17. DOI: https://doi.org/10.1186/s12942-020-00237-x

Macharia, P. M., Ouma, P. O., Gogo, E. G., Snow, R. W., & Noor, A. M. (2017). Spatial accessibility to basic public health services in South Sudan. Geospatial Health, 12(1), 510. DOI: https://doi.org/10.4081/gh.2017.510

Macharia, P. M., Odera, P. A., Snow, R. W., & Noor, A. M. (2018). Spatial models for malaria surveillance and control: Applications and future directions. Geospatial Health, 13(1), 599.

Madhav, N., Oppenheim, B., Gallivan, M., Mulembakani, P., Rubin, E., & Wolfe, N. (2017). Pandemics: Risks, impacts, and mitigation. Disease Control Priorities: Improving Health and Reducing Poverty, 9(3), 315–345. DOI: https://doi.org/10.1596/978-1-4648-0527-1_ch17

Moffett, A., Shackelford, N., & Sarkar, S. (2007). Malaria in Africa: Vector species’ niche models and relative risk maps. PLoS ONE, 2(9), e824. DOI: https://doi.org/10.1371/journal.pone.0000824

Moon, S., Sridhar, D., Pate, M. A., Jha, A. K., Clinton, C., Delaunay, S., ... & Piot, P. (2015). Will Ebola change the game? Ten essential reforms before the next pandemic. The Lancet, 385(9980), 2204–2221. DOI: https://doi.org/10.1016/S0140-6736(15)00946-0

Morley, J., Cowls, J., Taddeo, M., & Floridi, L. (2020). Ethical guidelines for COVID-19 tracing apps. Nature, 582(7810), 29–31. DOI: https://doi.org/10.1038/d41586-020-01578-0

Musa, G. J., Chiang, P. H., Sylk, T., Bavley, R., Keating, W., Lakew, B., Tsou, H. C., & Hoven, C. W. (2013). Use of GIS mapping as a public health tool—from cholera to cancer. Health Services Insights, 6, 111–116. DOI: https://doi.org/10.4137/HSI.S10471

Nhamo, G., Chikodzi, D., Kunene, H. P., & Mashula, N. (2020). COVID-19 vaccines and treatments nationalism: Challenges for LMICs. Global Public Health, 15(9), 1415–1428.

Nsubuga, P., White, M. E., Thacker, S. B., Anderson, M. A., Blount, S. B., Broome, C. V., ... & Trostle, M. (2014). Public health surveillance: A tool for targeting and monitoring interventions. Disease Control Priorities in Developing Countries, 2(1), 997–1018.

Oliver, N., Lepri, B., Sterly, H., Lambiotte, R., Deletaille, S., De Nadai, M., ... & Vinck, P. (2020). Mobile phone data for informing public health actions across the COVID-19 pandemic life cycle. Science Advances, 6(23), eabc0764. DOI: https://doi.org/10.1126/sciadv.abc0764

Olson, D., Lamb, M., Lopez, M. R., Colborn, J., & Paniagua-Avila, A. (2017). Performance of a geospatial surveillance system for malaria in Guatemala. Malaria Journal, 16(1), 255.

Peixoto, P. S., Marcondes, D., Peixoto, C., & Oliva, S. M. (2020). Modeling future spread of infections via mobile geolocation data and population dynamics. An application to COVID-19 in Brazil. PLoS ONE, 15(7), e0235732. DOI: https://doi.org/10.1371/journal.pone.0235732

Rocklöv, J., & Dubrow, R. (2020). Climate change: An enduring challenge for vector-borne disease prevention and control. Nature Immunology, 21(5), 479–483. DOI: https://doi.org/10.1038/s41590-020-0648-y

Sambala, E. Z., Manderson, L., & Cooper, S. (2019). The politics of malaria control in sub-Saharan Africa: Lessons from Mozambique. Globalization and Health, 15(1), 52.

Sannigrahi, S., Pilla, F., Basu, B., Basu, A. S., & Molter, A. (2020). Examining the association between socio-demographic composition and COVID-19 fatalities in the European region using spatial regression approach. Sustainable Cities and Society, 62, 102418. DOI: https://doi.org/10.1016/j.scs.2020.102418

Ting, D. S. W., Carin, L., Dzau, V., & Wong, T. Y. (2020). Digital technology and COVID-19. Nature Medicine, 26(4), 459–461. DOI: https://doi.org/10.1038/s41591-020-0824-5

Tom-Aba, D., Olaleye, A., Olayinka, A. T., Nguku, P., Waziri, N., Adewuyi, P., … & Lamunu, M. (2015). Innovative technological approach to Ebola virus disease outbreak response in Nigeria using the open data kit and form hub technology. PLoS ONE, 10(6), e0131000. DOI: https://doi.org/10.1371/journal.pone.0131000

Wang, F., & Luo, W. (2005). Assessing spatial and nonspatial factors for healthcare access: Towards an integrated approach to defining health professional shortage areas. Health & Place, 11(2), 131–146. DOI: https://doi.org/10.1016/j.healthplace.2004.02.003

Downloads

Published

20-12-2024

Issue

Section

Research Articles

How to Cite

[1]
Jumoke I. Ogunremi, Nelson N. Igwilo, and Oladayo O. Babalola, Trans., “Harnessing Geographic Information Science for Global Health Security and Pandemic Preparedness”, Int J Sci Res Sci & Technol, vol. 11, no. 6, pp. 1123–1141, Dec. 2024, doi: 10.32628/IJSRST25126248.