Construction of Cost Effective Two Probe Device for DC Resistivity Measurement and Study the Variation of Drift Mobility of Magnetic Material with Respect to Temperature

Authors

  • Ravindra N. Chikhale Department of Physics, J.S.M. College, Alibag, Raigad, Maharashtra, India Author
  • Vikas S. Shinde Department of Physics, K.E.S. Anandibai Pradhan Science College, Nagothane, Raigad, Maharashtra, India Author

DOI:

https://doi.org/10.32628/IJSRST25126256

Keywords:

Two Probe Method, Dc Resistivity, Activation Energy, Drift Mobility

Abstract

A cost effective two probe method was constructed and used to measure dc resistivity of the given magnetic sample. The dc resistivity was measured from temperature range 303K to 773K. The activation energy of the given magnetic sample was calculated using Arrhenius relation. Resistivity and activation energy of the magnetic sample mainly depends on hopping of charge carriers between atoms. For a given magnetic sample dc resistivity found to decrease with respect to temperature became NTP type semiconductor nature of the material. The graph indicates different magnetic ordering are present in the sample at different temperatures. It is observed that Drift mobility is inversely proportional to DC resistivity and increases with increase in temperature. The DC resistivity property of materials is very important to detect applications in technology.

Downloads

Download data is not yet available.

References

Jeseentharani, V., Reginamary, L., Jeyaraj, B., Dayalan, A., & Nagaraja, K. S. (2012). Nanocrystalline spinel Ni x Cu0. 8− x Zn0. 2Fe2O4: a novel material for humidity sensing. Journal of Materials Science, 47(8), 3529-3534. https://doi.org/10.1007/s10853-011-6198-9 DOI: https://doi.org/10.1007/s10853-011-6198-9

Bagade, A. A., & Rajpure, K. Y. (2016). Development of CoFe2O4 thin films for nitrogen dioxide sensing at moderate operating temperature. Journal of Alloys and Compounds, 657, 414-421. https://doi.org/10.1016/j.jallcom.2015.10.115 DOI: https://doi.org/10.1016/j.jallcom.2015.10.115

Gul, I. H., & Maqsood, A. (2008). Structural, magnetic and electrical properties of cobalt ferrites prepared by the sol–gel route. Journal of Alloys and Compounds, 465(1-2), 227-231. https://doi.org/10.1016/j.jallcom.2007.11.006 DOI: https://doi.org/10.1016/j.jallcom.2007.11.006

Raju, M. K., Raju, M. R., & Samatha, K. (2015). Structural, dc resistivity and activation energy studies of NiCuZn ferrite. J. Optoelectron. Adv. Mater., 17, 1075-1079.

Mousa, M. A., & Armed, M. A. (1988). Electrical conduction in γ-irradiated and unirradiated zinc-iron ferrites. Thermochimica acta, 125, 379-386. https://doi.org/10.1016/0040-6031(88)87236-8 DOI: https://doi.org/10.1016/0040-6031(88)87236-8

Parajuli, D., Murali, N., Rao, A. V., Ramakrishna, A. S. Y. M., & Samatha, K. (2022). Structural, dc electrical resistivity and magnetic investigation of Mg, Ni, and Zn substituted Co-Cu nano spinel ferrites. South African Journal of Chemical Engineering, 42, 106-114. DOI: https://doi.org/10.1016/j.sajce.2022.07.009

Ponpandian, N., Balaya, P., & Narayanasamy, A. (2002). Electricalconductivity and dielectric behaviour of nanocrystallineNiFe2O4 spinel. Journal of Physics: Condensed Matter, 14(12), 3221. 10.1088/0953-8984/14/12/311 DOI: https://doi.org/10.1088/0953-8984/14/12/311

Patange, S. M., Shirsath, S. E., Lohar, K. S., Jadhav, S. S., Kulkarni, N., & Jadhav, K. M. (2011). Electrical and switching properties of NiAlxFe2− xO4 ferrites synthesized by chemical method. Physica B: Condensed Matter, 406(3), 663-668. https://doi.org/10.1016/j.physb.2010.11.081 DOI: https://doi.org/10.1016/j.physb.2010.11.081

Supriya, S., Kumar, S., & Kar, M. (2017). Impedance and DC resistivity studies on chromium substituted cobalt ferrite. Journal of Materials Science: Materials in Electronics, 28(14), 10652-10673. https://doi.org/10.1007/s10854-017-6841-6 DOI: https://doi.org/10.1007/s10854-017-6841-6

Sontu, U. B., Yelasani, V., & Musugu, V. R. R. (2015). Structural, electrical and magnetic characteristics of nickel substituted cobalt ferrite nano particles, synthesized by self combustion method. Journal of Magnetism and Magnetic Materials, 374, 376-380. https://doi.org/10.1016/j.jmmm.2014.08.072 DOI: https://doi.org/10.1016/j.jmmm.2014.08.072

Ramakrishna, A., Murali, N., Mammo, T. W., Samatha, K., & Veeraiah, V. (2018). Structural and DC electrical resistivity, magnetic properties of Co0. 5M0. 5Fe2O4 (M= Ni, Zn, and Mg) ferrite nanoparticles. Physica B: Condensed Matter, 534, 134-140. https://doi.org/10.1016/j.physb.2018.01.033 DOI: https://doi.org/10.1016/j.physb.2018.01.033

Ramakrishna, A., Murali, N., Margarette, S. J., Mammo, T. W., Joythi, N. K., Sailaja, B., ... & Veeraiah, V. (2018). Studies on structural, magnetic, and DC electrical resistivity properties of Co0. 5M0. 37Cu0. 13Fe2O4 (M= Ni, Zn and Mg) ferrite nanoparticle systems. Advanced Powder Technology, 29(11), 2601-2607. https://doi.org/10.1016/j.apt.2018.07.005 DOI: https://doi.org/10.1016/j.apt.2018.07.005

Kanade, S. A. (2007) Ph.D. Thesis: Study of thick film Mn Co Ni Fe O NTC ceramics and its microwave characteristics using microstrip overplay technique, http://hdl.handle.net/10603/139808

Mulushoa, S. Y., Murali, N., Wegayehu, M. T., Veeraiah, V., & Samatha, K. (2018). Investigation of structural, DC-resistivity and magnetic properties of Mg ferrite. Materials Today: Proceedings, 5(13), 26460-26468. https://doi.org/10.1016/j.matpr.2018.08.100 DOI: https://doi.org/10.1016/j.matpr.2018.08.100

Suryanarayana, B., Ramanjaneyulu, B., Pandurangarao, K., Shanmukhi, P. S. V., Nagarjuna, M., Chohan, J. S., ... & Ijaz, M. F. (2024). Improved DC electrical resistivity and magnetic properties of La3+ substituted Ni0· 5Co0· 5Fe2-xLaxO4 (0.00≤ x≤ 0.20) spinel ferrite systems. Journal of the Indian Chemical Society, 101(11), 101365. https://doi.org/10.1016/j.jics.2024.101365 DOI: https://doi.org/10.1016/j.jics.2024.101365

Hankare, P. P., Sanadi, K. R., Garadkar, K. M., Patil, D. R., & Mulla, I. S. (2013). Synthesis and characterization of nickel substituted cobalt ferrite nanoparticles by sol–gel auto-combustion method. Journal of Alloys and Compounds, 553, 383-388. https://doi.org/10.1016/j.jallcom.2012.11.181 DOI: https://doi.org/10.1016/j.jallcom.2012.11.181

Suryanarayana, B., Nagasree, K. L. V., Shanmukhi, P. S. V., Chohan, J. S., Murali, N., Parajuli, D., ... & Samatha, K. (2024). Impact of substituting Cu2+/Ce3+ cations on the structural, magnetic and electrical properties of cobalt nano ferrites. Ceramics International, 50(23), 49254-49262. https://doi.org/10.1016/j.ceramint.2024.09.270 DOI: https://doi.org/10.1016/j.ceramint.2024.09.270

Ghazanfar, U., Siddiqi, S. A., & Abbas, G. (2005). Study of room temperature dc resistivity in comparison with activation energy and drift mobility of NiZn ferrites. Materials Science and Engineering: B, 118(1-3), 132-134. https://doi.org/10.1016/j.mseb.2004.12.086 DOI: https://doi.org/10.1016/j.mseb.2004.12.086

Singhal S., Jauhar S., Lakshmi N., Bansal S. (2013). Mn3+ substituted Co–Cd ferrites, CoCd0.4MnxFe1.6xO4 (0.1 6 x 6 0.6): Cation distribution, structural, magnetic and electrical properties, Journal of Molecular Structure, 1038, 45-51. http://dx.doi.org/10.1016/j.molstruc.2013.01.020 DOI: https://doi.org/10.1016/j.molstruc.2013.01.020

Downloads

Published

18-10-2025

Issue

Section

Research Articles

How to Cite

[1]
Ravindra N. Chikhale and Vikas S. Shinde, Trans., “Construction of Cost Effective Two Probe Device for DC Resistivity Measurement and Study the Variation of Drift Mobility of Magnetic Material with Respect to Temperature ”, Int J Sci Res Sci & Technol, vol. 12, no. 5, pp. 489–497, Oct. 2025, doi: 10.32628/IJSRST25126256.