Advances In Stable Mixed-Cation and Mixed-Halide Hybrid Perovskite Solar Cells : Toward High Efficiency and Long-Term Durability
DOI:
https://doi.org/10.32628/IJSRST25126257Keywords:
Mixed-Cation Perovskite, Mixed-Halide Perovskite, Stability, Bandgap Engineering, Interface Passivation, Photovoltaic PerformanceAbstract
The rapid advancement of hybrid perovskite solar cells (PSCs) has transformed photovoltaic research. They have a great combination of high efficiency, low production costs, and materials that can be changed. But when exposed to heat, moisture, and UV light, single-cation and single-halide perovskites become unstable. Because of this instability, they can't be used on a large scale. Recent advances in mixed-cation and mixed-halide engineering offer a robust approach to address these challenges. This method makes the phases more stable, aligns the bands better, and stops ions from moving around. The structural tolerance factor and environmental stability have both improved a lot by using a mix of A-site cations like FA⁺, MA⁺, Cs⁺, and Rb⁺, along with halides like I⁻, Br⁻, and Cl⁻. Consequently, certain devices now attain efficiencies exceeding 25% and exhibit prolonged operational longevity. This review examines the mechanisms influencing stability and performance, synthesis techniques, and innovative designs in mixed-composition perovskites. It also talks about important strategies like additive-enhanced fabrication, protecting interfaces, and controlling compositional gradients. We talk about problems that are still going on, like how to increase production, make sure things can be done over and over again, and keep the environment safe. We also look at possible future options, such as 2D/3D hybrid systems and combining tandem technologies. The review ends by stressing how important the relationship between structure and stability is for making commercially viable, next-generation perovskite solar technologies.
Downloads
References
Abate, A. (2017). Defects in hybrid perovskite solar cells. Physical Chemistry Chemical Physics, 19(12), 9322–9334. https://doi.org/10.1039/C6CP07916G
Azpiroz, J. M., Mosconi, E., Bisquert, J., & De Angelis, F. (2015). Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy & Environmental Science, 8(7), 2118–2127. https://doi.org/10.1039/C5EE00510B DOI: https://doi.org/10.1039/C5EE01265A
Bai, S., Da, P., Li, C., Wang, Z., & Wu, Z. (2019). Planar perovskite solar cells with long-term stability using a mixed-cation perovskite. Nature Energy, 4(6), 487–495. https://doi.org/10.1038/s41560-019-0387-2
Bartel, C. J., Sutton, C., Goldsmith, B. R., Ouyang, R., Musgrave, C. B., Ghiringhelli, L. M., & Scheffler, M. (2019). New tolerance factor to predict the stability of perovskite oxides and halides. Science Advances, 5(2), eaav0693. https://doi.org/10.1126/sciadv.aav0693 DOI: https://doi.org/10.1126/sciadv.aav0693
Brivio, F., Butler, K. T., Walsh, A., & van Schilfgaarde, M. (2015). Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers. Physical Review B, 92(14), 144308. https://doi.org/10.1103/PhysRevB.92.144308 DOI: https://doi.org/10.1103/PhysRevB.89.155204
Bush, K. A., Palmstrom, A. F., Yu, Z. J., Zhengshan, Y., Boccard, M., Cheacharoen, R., Mailoa, J. P., McMeekin, D. P., Hoye, R. L. Z., Bailie, C. D., Leijtens, T., & McGehee, M. D. (2017). 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nature Energy, 2, 17009. https://doi.org/10.1038/nenergy.2017.9 DOI: https://doi.org/10.1038/nenergy.2017.9
Chen, B., et al. (2021). Surface modification for efficient and stable perovskite solar cells. Science, 373(6561), 902–907. https://doi.org/10.1126/science.abj0810 DOI: https://doi.org/10.1126/science.abi6323
Chen, Z., et al. (2021). Unified thermodynamic theory for light-induced halide segregation in mixed halide perovskites. Nature Communications, 12, 2987. https://doi.org/10.1038/s41467-021-23008-z DOI: https://doi.org/10.1038/s41467-021-23008-z
Chen, W., et al. (2019). Additive engineering for stable perovskite solar cells. Advanced Materials, 31(47), 1902413. https://doi.org/10.1002/adma.201902413 DOI: https://doi.org/10.1002/adma.201902413
Grancini, G., & Nazeeruddin, M. K. (2019). Dimensional tailoring of hybrid perovskites for photovoltaics. Nature Reviews Materials, 4, 4–22. https://doi.org/10.1038/s41578-018-0065-9 DOI: https://doi.org/10.1038/s41578-018-0065-0
Hu, J., et al. (2021). Suppression of phase segregation in mixed-halide perovskites for efficient and stable solar cells. Nature Photonics, 15(2), 123–130. https://doi.org/10.1038/s41566-020-00733-0
Jeon, N. J., et al. (2015). Compositional engineering of perovskite materials for high-performance solar cells. Nature, 517(7535), 476–480. https://doi.org/10.1038/nature14133 DOI: https://doi.org/10.1038/nature14133
Jung, E. H., et al. (2019). Efficient, stable and scalable perovskite solar cells using mixed cations and halides. Nature, 567(7749), 511–515. https://doi.org/10.1038/s41586-019-1036-3 DOI: https://doi.org/10.1038/s41586-019-1036-3
Jung, M., Ji, S.-G., Kim, G., Kim, T. K., & Seok, S. I. (2020). Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications. Chemical Reviews, 120(14), 8012–8035. https://doi.org/10.1021/acs.chemrev.0c00139 DOI: https://doi.org/10.1021/acs.chemrev.0c00139
Kim, H. D., et al. (2020). Additive-assisted fabrication of mixed perovskites for enhanced device stability. Journal of Materials Chemistry A, 8(34), 17533–17541. https://doi.org/10.1039/D0TA05645G
Kim, J., et al. (2021). Tailored interface layers for high-performance perovskite solar cells. Advanced Energy Materials, 11(32), 2101174. https://doi.org/10.1002/aenm.202101174
Kim, M., et al. (2022). Durable encapsulation strategies for perovskite photovoltaics. Nature Energy, 7(3), 247–259. https://doi.org/10.1038/s41560-022-00985-0
Lee, J. W., et al. (2018). Stabilizing formamidinium lead iodide perovskite solar cells using a multication approach. Energy & Environmental Science, 11(8), 2156–2164. https://doi.org/10.1039/C8EE01171H
Li, X., Tschumi, M., Han, H., et al. (2019). Improved moisture and thermal stability of perovskite solar cells by effective encapsulation. Energy & Environmental Science, 12(8), 2412–2421. https://doi.org/10.1039/C9EE01093B
Luo, D., et al. (2019). Vapor-assisted perovskite film fabrication for high-efficiency solar cells. Advanced Energy Materials, 9(16), 1803572. https://doi.org/10.1002/aenm.201803572 DOI: https://doi.org/10.1002/aenm.201803572
Niu, G., Guo, X., & Wang, L. (2015). Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A, 3(17), 8970–8980. https://doi.org/10.1039/C4TA04994B DOI: https://doi.org/10.1039/C4TA04994B
Park, N.-G., Zhu, K., & Grätzel, M. (2023). Progress toward scalable and stable perovskite solar cells. Science, 379(6636), 446–454. https://doi.org/10.1126/science.adg8659
Saliba, M., et al. (2016). Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science, 354(6309), 206–209. https://doi.org/10.1126/science.aah5557 DOI: https://doi.org/10.1126/science.aah5557
Saliba, M., et al. (2018). How to make over 20% efficient perovskite solar cells in regular (n–i–p) and inverted (p–i–n) architectures. Chemistry of Materials, 30(13), 4193–4201. https://doi.org/10.1021/acs.chemmater.8b00136 DOI: https://doi.org/10.1021/acs.chemmater.8b00136
Turren-Cruz, S. H., Hagfeldt, A., & Saliba, M. (2018). Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture. Science, 362(6413), 449–453. https://doi.org/10.1126/science.aat8235 DOI: https://doi.org/10.1126/science.aat3583
Wang, Z., et al. (2019). Rubidium incorporation in perovskite solar cells: Toward high efficiency and stability. Joule, 3(2), 379–393. https://doi.org/10.1016/j.joule.2018.11.021 DOI: https://doi.org/10.1016/j.joule.2018.11.021
Yuan, S., et al. (2021). Additive engineering for stable mixed-halide perovskites. Nature Communications, 12(1), 2527. https://doi.org/10.1038/s41467-021-22700-4 DOI: https://doi.org/10.1038/s41467-021-22700-4
Yuan, Y., & Huang, J. (2016). Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Accounts of Chemical Research, 49(2), 286–293. https://doi.org/10.1021/acs.accounts.5b00420 DOI: https://doi.org/10.1021/acs.accounts.5b00420
Zhao, Y., et al. (2020). Improved stability of perovskite solar cells by interface engineering. Nature Energy, 5(9), 863–870. https://doi.org/10.1038/s41560-020-0660-4
Zai, H. (2021). Ion migration in halide perovskite solar cells. Advanced Materials Interfaces, 8(14), 2002178. https://doi.org/10.1002/admi.202002178
Roy, P. (2022). Perovskite Solar Cells: A Review of the Recent Advances. Materials Today: Proceedings, 56, 1049–1056. https://doi.org/10.1016/j.matpr.2022.03.262 DOI: https://doi.org/10.1016/j.matpr.2022.03.262
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0