FSDT-Based Numerical Analysis of Functionally Graded Plate under Uniform and Sinusoidally Distributed Loading
DOI:
https://doi.org/10.32628/IJSRST25126262Keywords:
FGM, FEM, FSDT, Static Analysis, ANSYSAbstract
The present study focuses on the linear static analysis of unidirectional functionally graded material plates using a numerical technique based on the First order Shear Deformation Theory within the commercially available software ANSYS. The FGM plates considered are composed of a mixture of Silicon Nitride as the ceramic phase and SUS304 as the metallic phase, and their stiffness properties are used to investigate the effect of various gradation patterns on centroidal deflection and axial normal stress under different boundary conditions. The plates are subjected to pressure, which is uniformly and sinusoidally distributed over the plate surface. Convergence and validation tests have been performed to demonstrate the accuracy and reliability of the results through comparison with existing literature. A parametric study of moderately thick FGM plates reveals that centroidal deflection is minimal for ceramic-rich plates and maximal for metal-rich plates. Additionally, the axial normal stress behaviour largely mirrors that of centroidal deflection, except in the case of metallic plates, indicating a degree of independence from the modulus of elasticity.
Downloads
References
M. Koizumi, “FGM activities in Japan,” Compos. Part B Eng., vol. 28, no. 1–2, pp. 1–4, Jan. 1997, doi: 10.1016/S1359-8368(96)00016-9. DOI: https://doi.org/10.1016/S1359-8368(96)00016-9
J. N. Reddy, “Analysis of functionally graded plates,” Int. J. Numer. Methods Eng., vol. 47, no. 1–3, pp. 663–684, 2000, doi: 10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8. DOI: https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
H. Werner, “A three-dimensional solution for rectangular plate bending free of transversal normal stresses,” Commun. Numer. Methods Eng., vol. 15, no. 4, pp. 295–302, 1999, doi: 10.1002/(SICI)1099-0887(199904)15:4<295::AID-CNM245>3.0.CO;2-S. DOI: https://doi.org/10.1002/(SICI)1099-0887(199904)15:4<295::AID-CNM245>3.0.CO;2-S
S. Vel and R. C. Batra, “Exact solution for thermoelastic deformations of functionally graded thick rectangular plates,” AIAA J., vol. 40, no. 7, pp. 1421–1433, 2002, doi: 10.2514/3.15212. DOI: https://doi.org/10.2514/2.1805
L. F. Qian, R. C. Batra, and L. M. Chen, “Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov–Galerkin method,” Compos. Part B Eng., vol. 35, no. 6–8, pp. 685–697, 2004, doi: 10.1016/j.compositesb.2004.02.004. DOI: https://doi.org/10.1016/j.compositesb.2004.02.004
A. J. M. Ferreira, R. C. Batra, C. M. C. Roque, L. F. Qian, and P. A. L. S. Martins, “Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method,” Compos. Struct., vol. 69, no. 4, pp. 449–457, 2005, doi: 10.1016/j.compstruct.2004.08.003. DOI: https://doi.org/10.1016/j.compstruct.2004.08.003
A. M. Zenkour, “Generalized shear deformation theory for bending analysis of functionally graded plates,” Appl. Math. Model., vol. 30, no. 1, pp. 67–84, 2006, doi: 10.1016/j.apm.2005.03.009. DOI: https://doi.org/10.1016/j.apm.2005.03.009
D. G. Zhang and Y. H. Zhou, “A theoretical analysis of FGM thin plates based on physical neutral surface,” Comput. Mater. Sci., vol. 44, no. 2, pp. 716–720, 2008, doi: 10.1016/j.commatsci.2008.05.016. DOI: https://doi.org/10.1016/j.commatsci.2008.05.016
M. Talha and B. N. Singh, “Static response and free vibration analysis of FGM plates using higher order shear deformation theory,” Appl. Math. Model., vol. 34, no. 12, pp. 3991–4011, 2010, doi: 10.1016/j.apm.2010.03.034. DOI: https://doi.org/10.1016/j.apm.2010.03.034
J. L. Mantari and C. Guedes Soares, “Bending analysis of thick exponentially graded plates using a new trigonometric higher order shear deformation theory,” Compos. Struct., vol. 94, no. 6, pp. 1991–2000, 2012, doi: 10.1016/j.compstruct.2012.01.005. DOI: https://doi.org/10.1016/j.compstruct.2012.01.005
A. M. Zenkour, “A simple four-unknown refined theory for bending analysis of functionally graded plates,” Appl. Math. Model., vol. 37, no. 20–21, pp. 9041–9051, 2013, doi: 10.1016/j.apm.2013.04.022. DOI: https://doi.org/10.1016/j.apm.2013.04.022
M. N. A. Gulshan Taj, A. Chakrabarti, and A. H. Sheikh, “Analysis of functionally graded plates using higher order shear deformation theory,” Appl. Math. Model., vol. 37, no. 18–19, pp. 8484–8494, 2013, doi: 10.1016/j.apm.2013.03.058. DOI: https://doi.org/10.1016/j.apm.2013.03.058
K. K. Pradhan and S. Chakraverty, “Static analysis of functionally graded thin rectangular plates with various boundary supports,” Arch. Civ. Mech. Eng., vol. 15, no. 3, pp. 721–734, 2015, doi: 10.1016/j.acme.2014.09.008. DOI: https://doi.org/10.1016/j.acme.2014.09.008
M. Taczała, R. Buczkowski, and M. Kleiber, “Analysis of FGM plates based on physical neutral surface using general third-order plate theory,” Compos. Struct., vol. 301, no. August, 2022, doi: 10.1016/j.compstruct.2022.116218. DOI: https://doi.org/10.1016/j.compstruct.2022.116218
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0