Advances in AI and ML for Cloud Computing: A Review of Algorithms, Challenges, and Innovations
DOI:
https://doi.org/10.32628/IJSRST2513120Keywords:
Cloud computing, Artificial Intelligence, Machine Learning, Dynamic resource allocation, Predictive analytics, Sustainability, Federated learning, Explainable AIAbstract
This review delves into the role of Artificial Intelligence (AI) and Machine Learning (ML) in revolutionizing cloud computing. It explores how AI/ML algorithms optimize resource management, enhance system scalability, strengthen security, and reduce operational costs. The paper categorizes AI/ML applications into domains such as dynamic resource allocation, anomaly detection, predictive analytics, and cost optimization. Key challenges, including scalability, data privacy, and interoperability, are discussed alongside emerging opportunities like federated learning for privacy-aware applications, explainable AI for transparent cloud management, and energy-efficient algorithms for sustainable cloud computing. This review underscores AI/ML's transformative potential while emphasizing the need for innovative solutions to overcome implementation challenges.
Downloads
References
S. H. H. Madni, M. S. A. Latiff, Y. Coulibaly, and S. M. Abdulhamid, “Resource scheduling for infrastructure as a service (IaaS) in cloud computing: Challenges and opportunities,” J. Netw. Comput. Appl., vol. 68, pp. 173–200, Jun. 2016. DOI: https://doi.org/10.1016/j.jnca.2016.04.016
K. C. Panda, Asurion Insurance, VA, USA, and S. Agrawal, “Application of AI and ML in the field of DevSecOps,” J Arti Inte & Cloud Comp, vol. 1, no. 4, pp. 1–4, Dec. 2022. DOI: https://doi.org/10.47363/JAICC/2022(1)280
A. Orive, A. Agirre, H.-L. Truong, I. Sarachaga, and M. Marcos, “Quality of service aware orchestration for cloud-Edge continuum applications,” Sensors (Basel), vol. 22, no. 5, p. 1755, Feb. 2022. DOI: https://doi.org/10.3390/s22051755
B. J. Copeland, “MYCIN,” Encyclopedia Britannica. 21-Nov-2018.
W. R. Swartout, “Rule-based expert systems: The mycin experiments of the stanford heuristic programming project,” Artif. Intell., vol. 26, no. 3, pp. 364–366, Jul. 1985. DOI: https://doi.org/10.1016/0004-3702(85)90067-0
W. van Melle, E. H. Shortliffe, and B. G. Buchanan, “EMYCIN: A knowledge engineer’s tool for constructing rule-based expert systems.” [Online]. Available: https://people.dbmi.columbia.edu/~ehs7001/Buchanan-Shortliffe-1984/Chapter-15.pdf. [Accessed: 28-Nov-2024].
O. Berezhnaya, “What is a Data Processing Pipeline, and Why Do You Need it?,” Jelvix, 25-Jan-2021. .
A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “JointDNN: An efficient training and inference engine for intelligent mobile cloud computing services,” IEEE Trans. Mob. Comput., vol. 20, no. 2, pp. 565–576, Feb. 2021. DOI: https://doi.org/10.1109/TMC.2019.2947893
Y. Chen, J. He, X. Zhang, C. Hao, and D. Chen, “Cloud-DNN,” in Proceedings of the 2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Seaside CA USA, 2019. DOI: https://doi.org/10.1145/3289602.3293915
T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” arXiv [cs.LG], 08-Mar-2016. DOI: https://doi.org/10.1145/2939672.2939785
A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep learning in TensorFlow,” arXiv [cs.LG], 15-Feb-2018.
S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connections for efficient neural networks,” arXiv [cs.NE], 08-Jun-2015.
B. Jacob et al., “Quantization and training of neural networks for efficient integer-arithmetic-only inference,” arXiv [cs.LG], 15-Dec-2017.
G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,” arXiv [stat.ML], 09-Mar-2015.
B. Chen, Y. Zhang, G. Iosifidis, and M. Liu, “Reinforcement learning on computational resource allocation of cloud-based wireless networks,” in 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 2020. DOI: https://doi.org/10.1109/WF-IoT48130.2020.9221234
X. Chen, L. Yang, Z. Chen, G. Min, X. Zheng, and C. Rong, “Resource allocation with workload-time windows for cloud-based software services: A deep reinforcement learning approach,” IEEE Trans. Cloud Comput., vol. 11, no. 2, pp. 1871–1885, Apr. 2023. DOI: https://doi.org/10.1109/TCC.2022.3169157
X. Deng, J. Zhang, H. Zhang, and P. Jiang, “Deep-reinforcement-learning-based resource allocation for cloud gaming via edge computing,” IEEE Internet Things J., vol. 10, no. 6, pp. 5364–5377, Mar. 2023. DOI: https://doi.org/10.1109/JIOT.2022.3222210
K. Karthiban and J. S. Raj, “RETRACTED ARTICLE: An efficient green computing fair resource allocation in cloud computing using modified deep reinforcement learning algorithm,” Soft Comput., vol. 24, no. 19, pp. 14933–14942, Oct. 2020. DOI: https://doi.org/10.1007/s00500-020-04846-3
Adaptive Resource Allocation in Cloud Data Centers using Actor-Critical Deep Reinforcement Learning for Optimized Load Balancing. .
N. Liu et al., “A hierarchical framework of cloud resource allocation and power management using deep reinforcement learning,” in 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 2017. DOI: https://doi.org/10.1109/ICDCS.2017.123
Z. Tianqing, W. Zhou, D. Ye, Z. Cheng, and J. Li, “Resource allocation in IoT edge computing via concurrent federated reinforcement learning,” IEEE Internet Things J., vol. 9, no. 2, pp. 1414–1426, Jan. 2022. DOI: https://doi.org/10.1109/JIOT.2021.3086910
Y. Zhang, J. Yao, and H. Guan, “Intelligent cloud resource management with deep reinforcement learning,” IEEE Cloud Comput., vol. 4, no. 6, pp. 60–69, Nov. 2017. DOI: https://doi.org/10.1109/MCC.2018.1081063
S. Shakya and S. Shakya, “Resource allocation and power management in cloud servers using deep reinforcement learning,” in Advances in Intelligent Systems and Computing, Singapore: Springer Singapore, 2022, pp. 789–798. DOI: https://doi.org/10.1007/978-981-16-5157-1_62
Z. Zhou, K. Luo, and X. Chen, “Deep reinforcement learning for intelligent cloud resource management,” in IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Vancouver, BC, Canada, 2021. DOI: https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484566
S. Kardani-Moghaddam, R. Buyya, and K. Ramamohanarao, “ADRL: A hybrid anomaly-aware deep reinforcement learning-based resource scaling in clouds,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 3, pp. 514–526, Mar. 2021. DOI: https://doi.org/10.1109/TPDS.2020.3025914
C. Liu, W. Li, J. Wan, L. Li, Z. Ma, and Y. Wang, “Resource management in cloud based on deep reinforcement learning,” in 2022 4th International Conference on Computer Communication and the Internet (ICCCI), Chiba, Japan, 2022. DOI: https://doi.org/10.1109/ICCCI55554.2022.9850259
C. Xu, K. Wang, and M. Guo, “Intelligent resource management in blockchain-based cloud datacenters,” IEEE Cloud Comput., vol. 4, no. 6, pp. 50–59, Nov. 2017. DOI: https://doi.org/10.1109/MCC.2018.1081060
W. Guo, W. Tian, Y. Ye, L. Xu, and K. Wu, “Cloud resource scheduling with deep reinforcement learning and imitation learning,” IEEE Internet Things J., vol. 8, no. 5, pp. 3576–3586, Mar. 2021. DOI: https://doi.org/10.1109/JIOT.2020.3025015
A. Heimerson, J. Eker, and K.-E. Årzén, “A proactive cloud application auto-scaler using reinforcement learning,” in 2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC), Vancouver, WA, USA, 2022. DOI: https://doi.org/10.1109/UCC56403.2022.00040
A. Kontarinis, V. Kantere, and N. Koziris, “Cloud resource allocation from the user perspective: A bare-bones reinforcement learning approach,” in Web Information Systems Engineering – WISE 2016, Cham: Springer International Publishing, 2016, pp. 457–469. DOI: https://doi.org/10.1007/978-3-319-48740-3_34
W. Liu, P. Wang, Y. Meng, C. Zhao, and Z. Zhang, “Cloud spot instance price prediction using kNN regression,” Hum.-centric Comput. Inf. Sci., vol. 10, no. 1, Dec. 2020. DOI: https://doi.org/10.1186/s13673-020-00239-5
M. Daraghmeh, A. Agarwal, and Y. Jararweh, “Regression-based approach for proactive predictive modeling of efficient cloud cost estimation,” in 2023 Tenth International Conference on Software Defined Systems (SDS), San Antonio, TX, USA, 2023. DOI: https://doi.org/10.1109/SDS59856.2023.10329194
M. Aldossary, I. Alzamil, and K. Djemame, “Towards virtual machine energy-aware cost prediction in clouds,” in Economics of Grids, Clouds, Systems, and Services, Cham: Springer International Publishing, 2017, pp. 119–131. DOI: https://doi.org/10.1007/978-3-319-68066-8_10
M. J. F. Rosa, A. P. F. Araujo, and F. L. S. Mendes, “Cost and time prediction for efficient execution of bioinformatics workflows in federated cloud,” in 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 2018. DOI: https://doi.org/10.1109/BIBM.2018.8621199
P. Leitner, J. Cito, and E. Stöckli, “Modelling and managing deployment costs of microservice-based cloud applications,” in Proceedings of the 9th International Conference on Utility and Cloud Computing, Shanghai China, 2016. DOI: https://doi.org/10.1145/2996890.2996901
M. Rak, A. Cuomo, U. Villano, and G. Aversano, “Prediction of cost and performance of cloud applications,” Int. J. Cloud Comput., vol. 4, no. 1, p. 28, 2015. DOI: https://doi.org/10.1504/IJCC.2015.067707
R. da Rosa Righi, E. Correa, M. M. Gomes, and C. A. da Costa, “Enhancing performance of IoT applications with load prediction and cloud elasticity,” Future Gener. Comput. Syst., vol. 109, pp. 689–701, Aug. 2020. DOI: https://doi.org/10.1016/j.future.2018.06.026
M. Aldossary and K. Djemame, “Performance and energy-based cost prediction of virtual machines auto-scaling in clouds,” in 2018 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Prague, 2018. DOI: https://doi.org/10.1109/SEAA.2018.00086
Y. Li, K. Hwang, K. Shuai, Z. Li, and A. Zomaya, “Federated clouds for efficient multitasking in distributed artificial intelligence applications,” IEEE Trans. Cloud Comput., pp. 1–12, 2022.
J. Zhao, R. Mortier, J. Crowcroft, and L. Wang, “Privacy-preserving machine learning based data analytics on edge devices,” in Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, New Orleans LA USA, 2018. DOI: https://doi.org/10.1145/3278721.3278778
D. R. Torres, C. Martín, B. Rubio, and M. Díaz, “An open source framework based on Kafka-ML for Distributed DNN inference over the Cloud-to-Things continuum,” J. Syst. Arch., vol. 118, no. 102214, p. 102214, Sep. 2021. DOI: https://doi.org/10.1016/j.sysarc.2021.102214
A. K. Sandhu, “Big data with cloud computing: Discussions and challenges,” Big Data Min. Anal., vol. 5, no. 1, pp. 32–40, Mar. 2022. DOI: https://doi.org/10.26599/BDMA.2021.9020016
M. M. H. Shuvo, S. K. Islam, J. Cheng, and B. I. Morshed, “Efficient acceleration of deep learning inference on resource-constrained edge devices: A review,” Proc. IEEE Inst. Electr. Electron. Eng., vol. 111, no. 1, pp. 42–91, Jan. 2023. DOI: https://doi.org/10.1109/JPROC.2022.3226481
U. A. Butt et al., “A review of machine learning algorithms for cloud computing security,” Electronics (Basel), vol. 9, no. 9, p. 1379, Aug. 2020. DOI: https://doi.org/10.3390/electronics9091379
Z. Chiba, N. Abghour, K. Moussaid, A. El omri, and M. Rida, “Intelligent approach to build a Deep Neural Network based IDS for cloud environment using combination of machine learning algorithms,” Comput. Secur., vol. 86, pp. 291–317, Sep. 2019. DOI: https://doi.org/10.1016/j.cose.2019.06.013
S. Abedi, M. Ghobaei-Arani, E. Khorami, and M. Mojarad, “Dynamic resource allocation using improved firefly optimization algorithm in cloud environment,” Appl. Artif. Intell., vol. 36, no. 1, pp. 1–27, Dec. 2022. DOI: https://doi.org/10.1080/08839514.2022.2055394
J. H. Joloudari et al., “The state-of-the-art review on resource allocation problem using artificial intelligence methods on various computing paradigms,” arXiv [cs.AI], 23-Mar-2022.
V. K. Singh and K. Joshi, “Automated Machine Learning (AutoML): an overview of opportunities for application and research,” J. Inf. Technol. Case Appl. Res., pp. 1–11, May 2022.
M. Chrysopoulos, I. Konstantinou, and N. Koziris, “Deep reinforcement learning in cloud elasticity through offline learning and return based scaling,” in 2023 IEEE 16th International Conference on Cloud Computing (CLOUD), Chicago, IL, USA, 2023. DOI: https://doi.org/10.1109/CLOUD60044.2023.00012
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0