To Access Multi Drugs Resistance Status and AmpC Production in Isolates of Pseudomonas spp. and Acinetobacter spp. from ICU

Authors

  • Ved Prakash Sharma Project Associate, Dr. BSA Medical College, India Author
  • Abhishek Kumar SRF, CDSA THSTI, India Author

DOI:

https://doi.org/10.32628/IJSRST251391

Abstract

Multidrug resistance in bacteria may be generated by one of two mechanisms. First, these bacteria may accumulate multiple genes, each coding for resistance to a single drug, within a single cell. This accumulation occurs typically on resistance (R) plasmids. Second, multidrug resistance may also occur by the increased expression of genes that code for multidrug efflux pumps, extruding a wide range of drugs. This review discusses our current knowledge on the molecular mechanisms involved in both types of resistance. some strains have become resistant to practically all of the commonly available agents. A notorious case is the methicillin-resistant Staphylococcus aureus (MRSA), which is resistant not only to methicillin (which was developed to fight against penicillinase-producing S. aureus) but usually also to aminoglycosides, macrolides, tetracycline, chloramphenicol, and lincosamides. Such strains are also resistant to disinfectants, and MRSA can act as a major source of hospital-acquired infections. Pseudomonas is a genus of Gram-negative, Gammaproteobacteria, belonging to the family Pseudomonadaceae and containing 191 described species. The members of the genus demonstrate a great deal of metabolic diversity and consequently are able to colonize a wide range of niches. Their ease of culture in vitro and availability of an increasing number of Pseudomonas strain genome sequences has made the genus an excellent focus for scientific research; the best studied species include P. aeruginosa in its role as an opportunistic human pathogen, the plant pathogen P. syringae, the soil bacterium P. putida, and the plant growth-promoting P. fluorescens, P. lini, P. migulae, and P. graminis. Most Pseudomonas spp. is naturally resistant to penicillin and the majority of related β-lactam antibiotics, but a number are sensitive to piperacillin, imipenem, ticarcillin, or ciprofloxacin. Acinetobacter is a genus of gram-negative bacteria belonging to the wider class of Gammaproteobacteria. Acinetobacter species are oxidase-negative, exhibit twitching motility, and occur in pairs under magnification. They are important soil organisms, where they contribute to the mineralization of, for example, aromatic compounds. Acinetobacter species are a key source of infection in debilitated patients in the hospital, in particular the species Acinetobacter baumannii. Species of the genus Acinetobacter are strictly aerobic, non-fermentative, Gram- negative bacilli. They show mostly a coccobacillary morphology on nonselective agar. Rods predominate in fluid media, especially during early growth.

📊 Article Downloads

References

Gupta et al. (2016), Multidrug-Resistant Pseudomonas in ICU, J. Glob. Infect. Dis., DOI: 10.4103/0974-777X.176142 DOI: https://doi.org/10.4103/0974-777X.176142

Chen et al. (2018), MDR A. baumannii in Pediatric ICU, BMC Infect. Dis., DOI: 10.1186/s12879-018-3511-0 DOI: https://doi.org/10.1186/s12879-018-3511-0

Shukla et al. (2022), Biofilm & MDR P. aeruginosa in ICU, J. Pure Appl. Microbiol., DOI: 10.22207/JPAM.16.2.04 ◻ Nseir S, Di Pompeo C, Brisson H, Dewavrin F, Tissier S, Diarra M, et al. "Intensive care unit-acquired Stenotrophomonas maltophilia: Incidence, risk factors, and outcome." Critical Care, 2006;10:R143. DOI: 10.1186/cc5059

Aloush V, Navon-Venezia S, Seigman-Igra Y, Cabili S, Carmeli Y. "Multidrug-resistant Pseudomonas aeruginosa: Risk factors and clinical impact." Antimicrobial Agents and Chemotherapy, 2006;50(1):43-8. DOI: 10.1128/AAC.50.1.43- 48.2006

Livermore DM. "Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare?" Clinical Infectious Diseases, 2002;34(5):634-40. DOI: 10.1086/338782

Queenan AM, Bush K. "Carbapenemases: The versatile β-lactamases." Clinical Microbiology Reviews, 2007;20(3):440-58. DOI: 10.1128/CMR.00001-07

Cornaglia G, Giamarellou H, Rossolini GM. "Metallo-β-lactamases: A last frontier for β-lactams?" The Lancet Infectious Diseases, 2011;11(5):381-93. DOI: 10.1016/S1473-3099(11)70056-1

Walsh TR, Toleman MA, Poirel L, Nordmann P. "Metallo-beta-lactamases: The quiet before the storm?" Clinical Microbiology Reviews, 2005;18(2):306-25. DOI: 10.1128/CMR.18.2.306-325.2005

Poirel L, Naas T, Nicolas D, Collet L, Bellais S, Cavallo JD, et al. "Characterization of VIM-2, a carbapenem-hydrolyzing metallo β-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France." Antimicrobial Agents and Chemotherapy, 2000;44(4):891-7. DOI: 10.1128/AAC.44.4.891-897.2000

Dunne WM Jr. "Bacterial adhesion: Seen any good biofilms lately?" Clinical Microbiology Reviews, 2002;15(2):155-66. DOI: 10.1128/CMR.15.2.155-166.2002

Obritsch MD, Fish DN, MacLaren R, Jung R. "National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002." Antimicrobial Agents and Chemotherapy, 2004;48(12):4606-10. DOI: 10.1128/AAC.48.12.4606-4610.2004

Collee JG, Duguid JP, Fraser AG, Marmion BP, Simmons A. "Laboratory strategy in the diagnosis of infective syndrome." In: Mackie and McCartney Practical Microbiology. 14th ed. London: Churchill Livingstone; 1996. p. 53-94.

Collee JG, Marr W. "Culture of bacteria." In: Mackie and McCartney Practical Microbiology. 14th ed. London: Churchill Livingstone; 1996. p. 113-30.

Clinical and Laboratory Standards Institute. "Performance standards for antimicrobial susceptibility testing: Seventeenth informational supplement." M100-S17. Wayne, PA: Clinical and Laboratory Standards Institute; 2007.

Paterson DL, Bonomo RA. "Extended-spectrum beta-lactamases: A clinical update." Clinical Microbiology Reviews, 2005;18(4):657-86. DOI: 10.1128/CMR.18.4.657-686.2005 DOI: https://doi.org/10.1128/CMR.18.4.657-686.2005

Jarlier V, Nicolas MH, Fournier G, Philippon A. "Extended-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: Hospital prevalence and susceptibility patterns." Reviews of Infectious Diseases, 1988;10(4):867-78. DOI: 10.1093/clinids/10.4.867 DOI: https://doi.org/10.1093/clinids/10.4.867

Shahid M, Malik A, Agarwal M, Singhal S. "Phenotypic detection of the extended spectrum and AmpC β-lactamases by a new spot inoculation method and modified three-dimensional extract test: Comparison with conventional three- dimensional extract test." Journal of Antimicrobial Chemotherapy, 2004;54(4):684-7. DOI: [10.1093/jac/dkh361](https://doi.org/10.109 DOI: https://doi.org/10.1093/jac/dkh389

Nseir S, Di Pompeo C, Brisson H, Dewavrin F, Tissier S, Diarra M, et al. Intensive care unit-acquired Stenotrophomonas maltophilia: Incidence, risk factors, and outcome. Crit Care. 2006;10(5):R143. doi:10.1186/cc5063.BioMed Central DOI: https://doi.org/10.1186/cc5063

Aloush V, Navon-Venezia S, Seigman-Igra Y, Cabili S, Carmeli Y. Multidrug-resistant Pseudomonas aeruginosa: Risk factors and clinical impact. Antimicrob Agents Chemother. 2006;50(1):43-8. doi:10.1128/AAC.50.1.43-48.2006.PubMed DOI: https://doi.org/10.1128/AAC.50.1.43-48.2006

Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare? Clin Infect Dis. 2002;34(5):634-40. doi:10.1086/338782.PubMed DOI: https://doi.org/10.1086/338782

Queenan AM, Bush K. Carbapenemases: The versatile β-lactamases. Clin Microbiol Rev. 2007;20(3):440-58. doi:10.1128/CMR.00001-07.PubMed DOI: https://doi.org/10.1128/CMR.00001-07

Cornaglia G, Giamarellou H, Rossolini GM. Metallo-β-lactamases: A last frontier for β-lactams? Lancet Infect Dis. 2011;11(5):381-93. doi:10.1016/S1473-3099(11)70056-1.PubMed DOI: https://doi.org/10.1016/S1473-3099(11)70056-1

Walsh TR, Toleman MA, Poirel L, Nordmann P. Metallo-β-lactamases: The quiet before the storm? Clin Microbiol Rev. 2005;18(2):306-25. doi:10.1128/CMR.18.2.306-325.2005.PubMed+1ASM Journals+1 DOI: https://doi.org/10.1128/CMR.18.2.306-325.2005

Poirel L, Naas T, Nicolas D, Collet L, Bellais S, Cavallo JD, et al. Characterization of VIM-2, a carbapenem-hydrolyzing metallo β-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother. 2000;44(4):891-7. doi:10.1128/AAC.44.4.891-897.2000. DOI: https://doi.org/10.1128/AAC.44.4.891-897.2000

Dunne WM Jr. Bacterial adhesion: Seen any good biofilms lately? Clin Microbiol Rev. 2002;15(2):155-66. doi:10.1128/CMR.15.2.155-166.2002. DOI: https://doi.org/10.1128/CMR.15.2.155-166.2002

Obritsch MD, Fish DN, MacLaren R, Jung R. National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob Agents Chemother. 2004;48(12):4606-10. doi:10.1128/AAC.48.12.4606-4610.2004. DOI: https://doi.org/10.1128/AAC.48.12.4606-4610.2004

Collee JG, Duguid JP, Fraser AG, Marmion BP, Simmons A. Laboratory strategy in the diagnosis of infective syndrome. In: Mackie & McCartney Practical Medical Microbiology. 14th ed. London: Churchill Livingstone; 1996. p. 53-94.

Downloads

Published

12-08-2025

Issue

Section

Research Articles

How to Cite

To Access Multi Drugs Resistance Status and AmpC Production in Isolates of Pseudomonas spp. and Acinetobacter spp. from ICU. (2025). International Journal of Scientific Research in Science and Technology, 12(4), 1040-1046. https://doi.org/10.32628/IJSRST251391