A Review on Zinc Stannate Nanoparticle Based On Gas Sensor

Authors

  • Dr. Manisha. S. Pande Department of Applied Sciences and Humanities (Physics), Shri Sant Gajanan Maharaj College of Engineering, Shegaon 444203, District Buldhana, Maharashtra, India Author

DOI:

https://doi.org/10.32628/IJSRST2613128

Keywords:

Zinc stannate, perovskite, nanoparticle, gas sensors

Abstract

Several types of semiconductor-based metal oxide gas sensors have been developed to meet the demands of modern life. Sensors are employed for monitoring environments in the commercial, health, and environmental categories. Researchers have been emphasizing on semiconductor-based metal oxide gas sensors types due to the numerous applications of gas sensors. Perovskite Zinc Stannate nanoparticle based on gas sensor are excellent prospects for air pollution reduction techniques, as reviewed in this research. This research concentrated on the employing of nanostructured perovskite-type semiconductor-based metal oxide gas sensors as a novel gas-sensitive material for the detection of nitrogen dioxide NO2 due to their toxic nature.

Downloads

Download data is not yet available.

References

M.U. Ali, G. Liu, B. Yousaf, Q. Abbas, H. Ullah, M.A.M. Munir, B. Fu, Pollution characteristics and human health risks of potentially (eco)toxic elements (PTEs) in road dust from metropolitan area of Hefei, China, Chemosphere 181 (2017) 111–121, https://doi.org/10.1016/j.chemosphere.2017.04.061. DOI: https://doi.org/10.1016/j.chemosphere.2017.04.061

Chen, A.; Chatterjee, S. Nanomaterials based electrochemical sensors for biomedical applications. Chem. Soc. Rev. 2013, 42, 5425–5438. [CrossRef] [PubMed] DOI: https://doi.org/10.1039/c3cs35518g

Prosposito, P.; Burratti, L.; Venditti, I. Silver Nanoparticles as Colorimetric Sensors for Water Pollutants. Chemosensors 2020, 8, 26. [CrossRef] DOI: https://doi.org/10.3390/chemosensors8020026

BelBruno, J.J. Nanomaterials in Sensors. Nanomaterials 2013, 3, 572–573. [CrossRef] [PubMed] DOI: https://doi.org/10.3390/nano3040572

Zhang, W.; Eperon, G.E.; Snaith, H.J. Metal halide perovskites for energy applications. Nat. Energy 2016, 1,16048. [CrossRef] DOI: https://doi.org/10.1038/nenergy.2016.48

Gao, P.; Grätzel, M.; Nazeeruddin, M.K. Organohalide lead perovskites for photovoltaic applications.Energy Environ. Sci. 2014, 7, 2448–2463. [CrossRef] DOI: https://doi.org/10.1039/C4EE00942H

Choi, J.J.; Billinge, S.J.L. Perovskites at the nanoscale: From fundamentals to applications. Nanoscale 2016, 8,6206–6208. [CrossRef] [PubMed] DOI: https://doi.org/10.1039/C6NR90040B

Labhasetwar, N.; Saravanan, G.; Kumar Megarajan, S.; Manwar, N.; Khobragade, R.; Doggali, P.; Grasset, F.Perovskite-type catalytic materials for environmental applications. Sci. Technol. Adv. Mater. 2015, 16, 036002.[CrossRef] [PubMed] DOI: https://doi.org/10.1088/1468-6996/16/3/036002

Zhao, Y.; Zhu, K. Organic–inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 2016, 45, 655–689. [CrossRef] [PubMed] DOI: https://doi.org/10.1039/C4CS00458B

Adjokatse, S.; Fang, H.-H.; Loi, M.A. Broadly tunable metal halide perovskites for solid-state light-emission applications. Mater. Today 2017, 20, 413–424. [CrossRef] DOI: https://doi.org/10.1016/j.mattod.2017.03.021

Varignon, J.; Bibes, M.; Zunger, A. Origin of band gaps in 3d perovskite oxides. Nat. Commun. 2019, 10, 1658.[CrossRef] DOI: https://doi.org/10.1038/s41467-019-09698-6

Zhang, J.; Qin, Z.; Zeng, D.; Xie, C. Metal-oxide-semiconductor based gas sensors: Screening, preparation, and integration. Phys. Chem. Chem. Phys. 2017, 19, 6313–6329. [CrossRef] [PubMed] DOI: https://doi.org/10.1039/C6CP07799D

Moradi, Z.; Fallah, H.; Hajimahmoodzadeh, M. Nanocomposite perovskite based optical sensor with broadband absorption spectrum. Sens. Actuators A 2018, 280, 47–51. [CrossRef] DOI: https://doi.org/10.1016/j.sna.2018.07.033

Nalimova, S.S.; Maksimov, A.I.; Matyushkin, L.B.; Moshnikov, V.A. Current State of Studies on Synthesis and Application of Zinc Stannate (Review). Glass Phys. Chem. 2019, 45, 251–260. [CrossRef] DOI: https://doi.org/10.1134/S1087659619040096

Anitha, A.; Ponnusamy, V. Optical and electrochemical studies on single-phase ZnSnO3 nanostructures—A photosensitive approach. Surf. Interfaces 2024, 51, 104747. [CrossRef] DOI: https://doi.org/10.1016/j.surfin.2024.104747

Hanh, N.H.; Van Duy, L.; Hung, C.M.; Van Duy, N.; Heo, Y.-W.; Van Hieu, N.; Hoa, N.D. VOC gas sensor based on hollow cubic assembled nanocrystal Zn2SnO4 for breath analysis. Sens. Actuators A 2020, 302, 111834. [CrossRef] DOI: https://doi.org/10.1016/j.sna.2020.111834

Shomakhov, Z.V.; Nalimova, S.S.; Rybina, A.A.; Buzovkin, S.S.; Kalazhokov, Z.; Moshnikov, V.A. Improving the sensor characteristics of binary and ternary oxide nanosystems. Phys. Chem. Asp. Study Clust. Nanostruct. Nanomater. 2023, 15, 879–887. [CrossRef]

Xiong, Y.; Lin, Y.; Wang, X.; Zhao, Y.; Tian, J. Defect engineering on SnO2 nanomaterials for enhanced gas sensing performances. Adv. Powder Mater. 2022, 1, 100033. [CrossRef] DOI: https://doi.org/10.1016/j.apmate.2022.02.001

Zhang, J.; Li, J. The Oxygen Vacancy Defect of ZnO/NiO Nanomaterials Improves Photocatalytic Performance and Ammonia Sensing Performance. Nanomaterials 2022, 12, 433. [CrossRef] DOI: https://doi.org/10.3390/nano12030433

Bora, T.; Al-Hinai, M.H.; Al-Hinai, A.T.; Dutta, J. Phase Transformation of Metastable ZnSnO3 Upon Thermal Decomposition by In-Situ Temperature-Dependent Raman Spectroscopy. J. Am. Ceram. Soc. 2015, 98, 4044–4049. [CrossRef] DOI: https://doi.org/10.1111/jace.13791

Zeng, Y.; Zhang, T.; Fan, H.; Lu, G.; Kang, M. Synthesis and gas-sensing properties of ZnSnO3 cubic nanocages and nanoskeletons. Sens. Actuators B 2009, 143, 449–453. [CrossRef] DOI: https://doi.org/10.1016/j.snb.2009.07.021

Xu, J.; Jia, X.; Lou, X.; Shen, J. One-step hydrothermal synthesis and gas sensing property of ZnSnO3 microparticles. Solid-State Electron. 2006, 50, 504–507. [CrossRef] DOI: https://doi.org/10.1016/j.sse.2006.02.001

Kovacheva, D.; Petrov, K. Preparation of crystalline ZnSnO3 from Li2SnO3 by low-temperature ion exchange. Solid State Ion. 1998,109, 327–332. [CrossRef] DOI: https://doi.org/10.1016/S0167-2738(97)00507-9

Ibrahim, D.M.; Gaber, A.A.; Reda, A.E.; Abdel Aziz, D.A.; Ajiba, N.A. Structural, optical, and dielectric properties of sol-gel derived perovskite ZnSnO3 nanomaterials. J. Sol-Gel Sci. Technol. 2024, 112, 703–714. [CrossRef] DOI: https://doi.org/10.1007/s10971-024-06550-2

Jie, J.;Wang, G.; Han, X.; Fang, J.; Yu, Q.; Liao, Y.; Xu, B.;Wang, Q.; Hou, J. Growth of Ternary Oxide Nanowires by Gold-Catalyzed Vapor-Phase Evaporation. J. Phys. Chem. B 2004, 108, 8249–8253. [CrossRef] DOI: https://doi.org/10.1021/jp049230g

Wang, L.; Zhang, X.; Liao, X.; Yang,W. A simple method to synthesize single-crystalline Zn2SnO4 (ZTO) nanowires and their photoluminescence properties. Nanotechnology 2005, 16, 2928–2931. [CrossRef] DOI: https://doi.org/10.1088/0957-4484/16/12/034

Ge, Q.; Liu, C.; Zhao, Y.; Wang, N.; Zhang, X.; Feng, C.; Zhang, S.; Wang, H.; Jiang, W.; Liu, S.; et al. Phase evolution in preparing ZnSnO3 powders by precipitation method. Appl. Phys. A 2021, 127, 89. [CrossRef] DOI: https://doi.org/10.1007/s00339-020-04244-4

L.A. Patila, I.G. Pathanb, D.N. Suryawanshic, A.R. Barid, , D.S. Ranee, Procedia Mate. Sci. 6 ( 2014 ) 1557 – 1565. DOI: https://doi.org/10.1016/j.mspro.2014.07.137

D.H. Zhang; Z.Q. Liu; C. Li; T. Tang; X.L. Liu; S. Han; B. Lei; C.W. Zhou, Nano Lett, 4 (2004)1919-1924. DOI: https://doi.org/10.1021/nl0489283

Q.Wang,N.Yao,D.Anetal., Ceram. Intern..42(2016) 15889–15896. DOI: https://doi.org/10.1016/j.ceramint.2016.07.062

A. Borhade, Y. Baste, Ara. J. Chem. 10 (2017) 404-411. DOI: https://doi.org/10.1016/j.arabjc.2012.10.001

D. Sreedhar, V. Reddy,V. Rao, Pro. Mate. Sci. 10 (2015) 116-123. DOI: https://doi.org/10.1016/j.mspro.2015.06.033

Z. T. Zhang, W. C. Li, Seetharaman, Metall. Meter. Trans. B 37 (2006) 615-621. DOI: https://doi.org/10.1007/s11663-006-0045-4

S. R. Morrison, Sens. Actuat. B 12 (1987) 425. DOI: https://doi.org/10.1016/0968-0004(87)90206-4

M.T. Robinson, J.L. Tung, M.H. Gharahcheshmeh, K.K. Gleason, Humidity-initiated gas sensors for volatile organic compounds sensing, Adv. Funct. Mater. 31 (2021) 2101310. https://doi.org/10.1002/adfm.202101310. DOI: https://doi.org/10.1002/adfm.202101310

L.X. Ou, M.Y. Liu, L.Y. Zhu, D.W. Zhang, H.L. Lu, Recent progress on flexible room-temperature gas sensors based on metal oxide semiconductor, Nano-Micro Lett. 14 (2022) 206. https://doi.org/10.1007/s40820-022-00956-9. DOI: https://doi.org/10.1007/s40820-022-00956-9

J.H. Ma, Y.Y. Li, J.C. Li, X.Y. Yang, Y. Ren, A.A. Alghamdi, G.X. Song, K.P. Yuan, Y.H.Deng, Rationally designed dual-mesoporous transition metal oxides/noble metal nanocomposites for fabrication of gas sensors in real-time detection of 3-hydroxy-2-butanone biomarker, Adv. Funct. Mater. 32 (2022) 2107439.https://doi.org/10.1002/adfm.202107439. DOI: https://doi.org/10.1002/adfm.202107439

J. Li, Y.J. Sun, Z.M. Tong, Z.T. Zhao, W.D. Zhang, J. Hu, L. Chen, The controllable synthesis and enhanced gas sensing performances of AuNP-modified ZnSnO3 hollow nanocubes toward highly sensitive toluene detection, New J. Chem. 46 (2022) 14363-14374. https://doi.org/10.1039/D2NJ02133A. DOI: https://doi.org/10.1039/D2NJ02133A

J.Y. Xu, H.L. Liao, C. Zhang, ZnSnO3 based gas sensors for pyridine volatile marker detection in rice aging during storage, Food Chem. 408 (2023) 135204.https://doi.org/10.1016/j.foodchem.2022.135204. DOI: https://doi.org/10.1016/j.foodchem.2022.135204

Downloads

Published

31-01-2026

Issue

Section

Research Articles

How to Cite

[1]
Dr. Manisha. S. Pande, Tran., “A Review on Zinc Stannate Nanoparticle Based On Gas Sensor”, Int J Sci Res Sci & Technol, vol. 13, no. 1, pp. 170–175, Jan. 2026, doi: 10.32628/IJSRST2613128.