Ensemble Machine Learning for Reliable Air Pollution Prediction and Sustainable Environmental Management
DOI:
https://doi.org/10.32628/IJSRST261316Keywords:
Air Pollution, Data-Driven Modelling, Smart Environmental Factors, Machine Learning, Ensemble Model, Pollution Prevention, SustainabilityAbstract
Air pollution poses significant threats to human health and environmental sustainability, requiring strong predictive models to monitor and forecast air quality. This research sought to develop and assess a resilient air pollution forecast model using data-driven modelling methodologies. The study used a thorough technique that included the compilation of worldwide air pollution datasets, succeeded by data pre-treatment and modification to guarantee the precision and pertinence of the input data. This data-centric methodology enabled the examination and interpretation of the dataset using several machine learning methods. The research examined the efficacy of several machine learning algorithms, including AdaBoost, Decision Tree, Extra Tree, Random Forest, Naïve Bayes, K-Nearest Neighbour (KNN), and Neural Network, in predicting diverse levels of air quality. Each algorithm was assessed according to precision, recall, F1-score, and overall accuracy, with specific emphasis on difficult air quality classifications. The findings indicated that some models, including Decision Tree, Extra Tree, Random Forest, and Neural Network, attained excellent accuracy and F1-scores, whilst others, such as AdaBoost and Naïve Bayes, exhibited deficiencies in managing certain air quality categories. An ensemble model was created to address these constraints and improve overall forecast accuracy by integrating the capabilities of the most effective algorithms. The ensemble model exhibited outstanding performance, attaining flawless precision, recall, F1-scores, and accuracy across all air quality categories, signifying its potential as a highly dependable instrument for real-time air quality monitoring and prediction. This research finds that the ensemble model signifies a substantial improvement in air pollution forecasting. Therefore, providing an effective option for environmental monitoring systems. The research underscores the significance of amalgamating several machine learning algorithms to enhance model resilience and precision, offering critical insights for public health administration and policy formulation.
Downloads
References
X. Liu, Y. Yang, and Q. Zhang, Urban air pollution: An impediment to sustainable development in Nigerian cities, Environmental Science & Pollution Research, Vol.29, No.5, pp.6212-6225, 2022. doi: 10.1007/s11356-022-22689-w.
Li G, Tang Y, Yang H (2022) A new hybrid prediction model of air quality index based on secondary decomposition and improved kernel extreme ml. Chemosphere 305: 135348
Manish Kumar Srivastava, Sunny Kumar, Yusuf Perwej, Arpita Vishwakarma, N. Akhtar, “Metaheuristic Deep Learning Integrated with Evolutionary Optimization for Air Pollution Forecasting”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN: 2456-3307, Volume 12, Issue 1, Pages 7-19, January 2026, DOI: 10.32628/CSEIT26122 DOI: https://doi.org/10.32628/CSEIT26122
Y. Perwej, “Unsupervised Feature Learning for Text Pattern Analysis with Emotional Data Collection: A Novel System for Big Data Analytics”, IEEE International Conference on Advanced computing Technologies & Applications (ICACTA'22), SCOPUS, IEEE No: #54488 ISBN No Xplore: 978-1-6654-9515-8, Coimbatore, India, 4-5 March 2022, DOI: 10.1109/ICACTA54488.2022.9753501
Y. Perwej, Firoj Parwej, “A Neuroplasticity (Brain Plasticity) Approach to Use in Artificial Neural Network”, International Journal of Scientific & Engineering Research (IJSER), France, ISSN 2229 – 5518, Volume 3, Issue 6, Pages 1- 9, 2012, DOI: 10.13140/2.1.1693.2808
Y. F. Xing, Y. H. Xu, M. H. Shi, et al., “The impact of PM2.5 on the human respiratory system,” Journal of Thoracic Disease, vol. 8, no. 1, E69–E74, 2016.
C. Cao, W. Jiang, and B. Wang et al., “Inhalable microorganisms in Beijing‟s PM2.5 and PM10 pollutants during a severe smog event,” Environ Sci Technol, vol. 48, no. 3, pp. 1499–1507, 2014. DOI: https://doi.org/10.1021/es4048472
Y. Perwej, “An Evaluation of Deep Learning Miniature Concerning in Soft Computing”, International Journal of Advanced Research in Computer and Communication Engineering (IJARCCE), ISSN (Online): 2278-1021, ISSN (Print): 2319-5940, Volume 4, Issue 2, Pages 10 - 16, 2015, DOI: 10.17148/IJARCCE.2015.4203 DOI: https://doi.org/10.17148/IJARCCE.2015.4203
Y. Perwej, “The Bidirectional Long-Short-Term Memory Neural Network based Word Retrieval for Arabic Documents”, Transactions on Machine Learning and Artificial Intelligence (TMLAI), which is published by Society for Science and Education, United Kingdom (UK), ISSN 2054-7390, Volume 3, Issue 1, Pages 16 - 27, 2015, DOI: 10.14738/tmlai.31.863 DOI: https://doi.org/10.14738/tmlai.31.863
Vaishali Singh, Soumya Verma, Ayush Srivastava, Abhishek Dubey, Dr. Nikhat Akhtar, “Eco-Sensing System for Water Pollution and Microplastic Detection”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN: 2456-3307, Volume 11, Issue 3, Pages 679-690, May 2025, DOI: 10.32628/CSEIT25113333 DOI: https://doi.org/10.32628/CSEIT25113333
S. Yang, Z. Zhang, and X. Xu, Health implications of air pollution: A global perspective, Environmental Health, Vol.8, No.3, pp.115-123, 2009. doi: 10.1186/1476-069X-8-3. DOI: https://doi.org/10.1186/1476-069X-8-3
Y. Kim, J. Lee, and K. Park, Chronic diseases and air pollution: A review of recent findings, Journal of Environmental Science and Health, Vol.53, No.10, pp.943-955, 2018. doi: 10.1080/10934529.2018.1514720
Y. Perwej , Asif Perwej , “Forecasting of Indian Rupee (INR) / US Dollar (USD) Currency Exchange Rate Using Artificial Neural Network”, International Journal of Computer Science, Engineering and Applications (IJCSEA), which is published by Academy & Industry Research Collaboration Center (AIRCC), USA , Volume 2, No. 2, Pages 41- 52, April 2012, DOI: 10.5121/ijcsea.2012.2204 DOI: https://doi.org/10.5121/ijcsea.2012.2204
Y. Perwej, “Unsupervised Feature Learning for Text Pattern Analysis with Emotional Data Collection: A Novel System for Big Data Analytics”, IEEE International Conference on Advanced computing Technologies & Applications (ICACTA'22), SCOPUS, IEEE No: #54488 ISBN No Xplore: 978-1-6654-9515-8, Coimbatore, India, 2022, DOI: 10.1109/ICACTA54488.2022.9753501 DOI: https://doi.org/10.1109/ICACTA54488.2022.9753501
Y. Perwej, S. A. Hann, N. Akhtar, “The State-of-the-Art Handwritten Recognition of Arabic Script Using Simplified Fuzzy ARTMAP and Hidden Markov Models”, International Journal of Computer Science and Telecommunications (IJCST), Sysbase Solution (Ltd), UK, London, ISSN 2047-3338, Volume, Issue 8, Pages, 26 - 32, 2014
Y. Perwej, Asif Perwej, Firoj Parwej, “An Adaptive Watermarking Technique for the copyright of digital images and Digital Image Protection”, International journal of Multimedia & Its Applications (IJMA), Academy & Industry Research Collaboration Center (AIRCC) , USA , Volume 4, No.2, Pages 21- 38, 2012, DOI: 10.5121/ijma.2012.4202 DOI: https://doi.org/10.5121/ijma.2012.4202
Y. Perwej , Firoj Parwej, Asif Perwej, “Copyright Protection of Digital Images Using Robust Watermarking Based on Joint DLT and DWT ”, International Journal of Scientific & Engineering Research (IJSER), France, ISSN 2229-5518, Volume 3, Issue 6, Pages 1- 9, June 2012
V. T. T. Minh, T. T. Tin, and T. T. Hien, “PM2.5 forecast system by using machine learning and WRF model, A case study: Ho Chi Minh City, Vietnam,” Aerosol and Air Quality Research, vol. 21, no. 12, 210108.
U. Pak, J. Ma, U. Ryu, et al., “Deep learning-based PM2.5 prediction considering the spatiotemporal correlations: A case study of Beijing, China,” Science of The Total Environment, vol. 699, 133561, 2020.
Farheen Siddiqui, Sunny Kumar, Yusuf Perwej, Homa Rizvi, N. Akhtar, “Optimizing Air Quality Labelling with Advanced Machine Learning Techniques”, Journal of Emerging Technologies and Innovative Research (JETIR), ISSN-2349-5162, Volume 12, Issue 12, Pages 688-694, 2025, DOI: 10.6084/m9.jetir.JETIR2512381
V. T. T. Minh, T. T. Tin, and T. T. Hien, “PM2.5 forecast system by using machine learning and WRF model, A case study: Ho Chi Minh City, Vietnam,” Aerosol and Air Quality Research, vol. 21, no. 12, 210108. DOI: https://doi.org/10.4209/aaqr.210108
U. Pak, J. Ma, U. Ryu, et al., “Deep learning-based PM2.5 prediction considering the spatiotemporal correlations: A case study of Beijing, China,” Science of The Total Environment, vol. 699, 133561, 2020
Li G, Tang Y, Yang H (2022) A new hybrid prediction model of air quality index based on secondary decomposition and improved kernel extreme learning machine. Chemosphere 305: 135348. DOI: https://doi.org/10.1016/j.chemosphere.2022.135348
Q. Tao, F. Liu, Y. Li, and D. Sidorov, "Air pollution forecasting using a deep learning model based on 1D convnets and bidirectional GRU," IEEE Access, Vol.7, pp.76690-76698, 2019. doi: 10.1109/ACCESS.2019.2921578. DOI: https://doi.org/10.1109/ACCESS.2019.2921578
Y. Liu, P. Wang, Y. Li, L. Wen, and X. Deng, "Air quality prediction models based on meteorological factors and real-time data of Industrial Waste Gas," Sci. Rep., Vol.12, No.1, pp.8392, 2022. doi: 10.1038/s41598-022-13579-2. DOI: https://doi.org/10.1038/s41598-022-13579-2
P. Jiang, C. Li, R. Li, and H. Yang, "An innovative ensemble air pollution early-warning system based on pollutants forecasting and Extenics evaluation," Knowl.-Based Syst., Vol.164, pp.174-192, Jan. 2019. doi: 10.1016/j.knosys.2018.10.036.
Tsan Y T, Kristiani E, Liu P Y, et al. (2022) In the Seeking of Association between Air Pollutant and COVID-19 Confirmed Cases Using Deep Learning. Int J Environl Res Pub He 19: 6373. https://doi.org/10.3390/ijerph19116373 DOI: https://doi.org/10.3390/ijerph19116373
N. Akhtar, Nazia Tabassum, Dr. Asif Perwej, Y. Perwej,“ Data Analytics and Visualization Using Tableau Utilitarian for COVID-19 (Coronavirus)”, Global Journal of Engineering and Technology Advances (GJETA), Volume 3, Issue 2, Pages 28-50, 2020, DOI: 10.30574/gjeta.2020.3.2.0029 DOI: https://doi.org/10.30574/gjeta.2020.3.2.0029
S. Li, G. Xie, J. Ren, L. Guo, Y. Yang et al., “Urban PM2.5 concentration prediction via attention-based cnn–lstm,” Applied Sciences, vol. 10, no. 6, pp. 1953, 2020. DOI: https://doi.org/10.3390/app10061953
F. Xiao, M. Yang, H. Fan, M. A. Al-Qaness, “An improved deep learning model for predicting daily PM2.5 concentration,” Scientific Reports, vol. 10, no. 1, pp. 1–11, 2020. DOI: https://doi.org/10.1038/s41598-020-77757-w
T. Li, M. Hua, and X. U. Wu, “A hybrid CNN-LSTM model for forecasting particulate matter (PM2.5),” IEEE Access, vol. 8, pp. 26933-26940, 2020.
Farheen Siddiqui, Sunny Kumar, Dr. Yusuf Perwej, Homa Rizvi, Dr. Nikhat Akhtar, “Optimizing Air Quality Labelling with Advanced Machine Learning Techniques”, Journal of Emerging Technologies and Innovative Research (JETIR), ISSN-2349-5162, Volume 12, Issue 12, Pages 688-694, December 2025, DOI: 10.6084/m9.jetir.JETIR2512381
W. Du, L. Chen, H. Wang, Z. Shan, Z. Zhou et al., “Deciphering urban traffic impacts on air quality by deep learning and emission inventory,” Journal of Environmental Sciences, vol. 124, pp. 745–757, 2023. DOI: https://doi.org/10.1016/j.jes.2021.12.035
T. Li, M. Hua and X. Wu, “A hybrid CNN-LSTM model for forecasting particulate matter (PM2.5),” IEEE Access, vol. 8, pp. 26933–26940, 2020. DOI: https://doi.org/10.1109/ACCESS.2020.2971348
Y. Perwej, Nikhat Akhtar, Devendra Agarwal, “The emerging technologies of Artificial Intelligence of Things (AIoT) current scenario, challenges, and opportunities”, Book Title “Convergence of Artificial Intelligence and Internet of Things for Industrial Automation”, SCOPUS, ISBN: 978-1-032-42844-4, CRC Press, Taylor & Francis Group, 2024, DOI: 10.1201/9781003509240-1 DOI: https://doi.org/10.1201/9781003509240-1
Patil V. H. , Dhanke J. ., Ghaly M. A. ., Patil, R. N. ., Yusuf Perwej, Shrivastava A., “A Novel Approach for Crop Selection and Water Management using Mamdani’s Fuzzy Inference and IoT” ,International Journal on Recent and Innovation Trends in Computing and Communication (IJRITCC), SCOPUS, ISSN: 2321-8169, Volume 11, Issue 9, Pages 62-68, 2023, DOI: 10.17762/ijritcc.v11i9.8320 DOI: https://doi.org/10.17762/ijritcc.v11i9.8320
Shubham Mishra, Mrs Versha Verma, Nikhat Akhtar, Shivam Chaturvedi, Yusuf Perwej, “An Intelligent Motion Detection Using OpenCV” , International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN: 2395-1990 , Online ISSN : 2394-4099, Volume 9, Issue 2, Pages 51-63, 2022, DOI: 10.32628/IJSRSET22925 DOI: https://doi.org/10.32628/IJSRSET22925
Venkata K. S. Maddala, Dr. Shantanu Shahi, Yusuf Perwej, H G Govardhana Reddy, “Machine Learning based IoT application to Improve the Quality and precision in Agricultural System”, European Chemical Bulletin (ECB), ISSN: 2063-5346, SCOPUS, Hungary, Volume 12, Special Issue 6, Pages 1711 – 1722, May 2023, DOI: 10.31838/ecb/2023.12.si6.157
N. Akhtar, Hemlata Pant, Apoorva Dwivedi, Vivek Jain, Y. Perwej, “A Breast Cancer Diagnosis Framework Based on Machine Learning”, International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN: 2395-1990, Volume 10, Issue 3, Pages 118-132, 2023, DOI: 10.32628/IJSRSET2310375 DOI: https://doi.org/10.32628/IJSRSET2310375
Pak, U.; Ma, J.; Ryu, U.; Ryom, K.; Juhyok, U.; Pak, K.; Pak, C. Deep Learning-Based PM2.5 Prediction Considering the Spatiotemporal Correlations: A Case Study of Beijing, China. Sci. Total Environ. 2020, 699, 133561. DOI: https://doi.org/10.1016/j.scitotenv.2019.07.367
Ma, J.; Cheng, J.C.; Lin, C.; Tan, Y.; Zhang, J. Improving Air Quality Prediction Accuracy at Larger Temporal Resolutions Using Deep Learning and Transfer Learning Techniques. Atmos. Environ. 2019, 214, 116885. DOI: https://doi.org/10.1016/j.atmosenv.2019.116885
Alhirmizy, S.; Qader, B. Multivariate Time Series Forecasting with LSTM for Madrid, Spain Pollution. In Proceedings of the 2019 International Conference on Computing and Information Science and Technology and Their Applications (ICCISTA), Baghdad, Iraq, 16–17 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. DOI: https://doi.org/10.1109/ICCISTA.2019.8830667
Pagano, E.; Barbierato, E.A. Time Series Approach to Smart City Transformation: The Problem of Air Pollution in Brescia. AI 2024, 5, 17–37.
KDV Prasad, Yusuf Perwej, E. Nageswara Rao, Himanshu Bhaidas Patel, “IoT Devices for Agricultural to Improve Food and Farming Technology”, Journal of Survey in Fisheries Sciences (JSFS), ISSN: 2368-7487, SCOPUS, Volume 10, No. 1S (2023): Special Issue 1, Pages 4054-4069, Canada, 2023
Kajal, Neha Singh, Nikhat Akhtar, Ms. Sana Rabbani, Y. Perwej, Susheel Kumar, “Using Emerging Deep Convolutional Neural Networks (DCNN) Learning Techniques for Detecting Phony News”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN: 2456-3307, Volume 10, Issue 1, Pages 122-137, 2024, DOI: 10.32628/CSEIT2410113 DOI: https://doi.org/10.32628/CSEIT2410113
Firoj Parwej, N. Akhtar, Y. Perwej, “A Close-Up View About Spark in Big Data Jurisdiction”, International Journal of Engineering Research and Application (IJERA), ISSN: 2248-9622, Volume 8, Issue 1, (Part -I1), Pages 26-41, January 2018, DOI: 10.9790/9622-0801022641
Saurabh Sahu, Km Divya, Neeta Rastogi, Puneet Kumar Yadav, Yusuf Perwej, “Sentimental Analysis on Web Scraping Using Machine Learning Method” , Journal of Information and Computational Science (JOICS), ISSN: 1548-7741, Volume 12, Issue 8, Pages 24- 29, 2022
Arpita Vishwakarma, Sunny Kumar, Yusuf Perwej, Manish Kumar Srivastava, Nikhat Akhtar, “Hybridized Deep Neural Networks for Air Pollution Forecasting and AQI Level Identification”, International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN: 2395-1990, Online ISSN: 2394-4099, Volume 13, No. 1, Pages 54-67, January 2026, DOI: 10.32628/IJSRSET26134 DOI: https://doi.org/10.32628/IJSRSET26134
Xu J, Wang S, Ying N, et al. (2023) Dynamic graph neural network with adaptive edge attributes for air quality prediction: A case study in China. Heliyon 9: 17746. DOI: https://doi.org/10.1016/j.heliyon.2023.e17746
Shobhit Kumar Ravi, Shivam Chaturvedi, Dr. Neeta Rastogi, N. Akhtar, Y. Perwej, “A Framework for Voting Behavior Prediction Using Spatial Data”, International Journal of Innovative Research in Computer Science & Technology (IJIRCST), ISSN: 2347-5552, Volume 10, Issue 2, Pages 19-28, 2022, DOI: 10.55524/ijircst.2022.10.2.4 DOI: https://doi.org/10.55524/ijircst.2022.10.2.4
Y. Perwej, “An Optimal Approach to Edge Detection Using Fuzzy Rule and Sobel Method”, International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering (IJAREEIE), ISSN (Print) : 2320 – 3765, ISSN (Online): 2278 – 8875, Volume 4, Issue 11, Pages 9161-9179, 2015, DOI: 10.15662/IJAREEIE.2015.0411054
Shweta Pandey, Rohit Agarwal, Sachin Bhardwaj, Sanjay Kumar Singh, Y. Perwej, Niraj Kumar Singh, “A Review of Current Perspective and Propensity in Reinforcement Learning (RL) in an Orderly Manner” , the International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), Volume 9, Issue 1, Pages 206-227, 2023, DOI: 10.32628/CSEIT2390147 DOI: https://doi.org/10.32628/CSEIT2390147
Mahmoud AbouGhaly, Yusuf Perwej, Mumdouh Mirghani Mohamed Hassan, Nikhat Akhtar, “Smart Sensors and Intelligent Systems: Applications in Engineering Monitoring” , International Journal of Intelligent Systems and Applications in Engineering, SCOPUS, ISSN: 2147- 6799, Volume 12, Issue 22s, Pages 720–727, July 2024
Neha Anand, Arpita Vishwakarma, Dr. Yusuf Perwej, Neeta Bhusal Sharma, Atifa Parveen, “A Hybrid Deep Learning Ensemble Approach for Enhanced Data Mining Efficiency”, Journal of Emerging Technologies and Innovative Research (JETIR), ISSN-2349-5162, Volume 12, Issue 8, Pages 268 - 276, 2025, DOI: 10.6084/m9.jetir.JETIR2508238
X. Wang and B. Wang, “Research on prediction of environmental aerosol and PM2.5 based on artificial neural network,” Neural Computing and Applications, vol. 31, pp. 8217–8227, 2019. DOI: https://doi.org/10.1007/s00521-018-3861-y
Shamim Ahmad, Farheen Siddiqui, Y. Perwej, Homa Rizvi, Dr. Nikhat Akhtar, “Modelling Crop Yield with Deep CNN-LSTM for Spatiotemporal Data Analysis”, International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN: 2456-3307, Volume 11, Issue 5, Pages 54-64, September 2025, DOI: 10.32628/CSEIT25111697 DOI: https://doi.org/10.32628/CSEIT25111697
Y. Perwej, “The Hadoop Security in Big Data: A Technological Viewpoint and Analysis”, International Journal of Scientific Research in Computer Science and Engineering (IJSRCSE) , E-ISSN: 2320-7639, Volume 7, Issue 3, Pages 1- 14, June 2019, DOI: 10.26438/ijsrcse/v7i3.1014 DOI: https://doi.org/10.26438/ijsrcse/v7i3.1014
Vito, S. (2008). Air Quality [Dataset]. UCI Machine Learning Repository. https://doi.org/10.24432/C59K5F
M. A. Hamza, H. Shaiba, R. Marzouk, A. Alhindi, M. M. Asiri et al., “Big data analytics with artificial intelligence enabled environmental air pollution monitoring framework,” Computers, Materials & Continua, vol. 73, no. 2, pp. 3235–3250, 2022 DOI: https://doi.org/10.32604/cmc.2022.029604
Y. Perwej, Shaikh Abdul Hannan, Firoj Parwej, Nikhat Akhtar, “A Posteriori Perusal of Mobile Computing”, International Journal of Computer Applications Technology and Research (IJCATR), which is published by ATS (Association of Technology and Science), India, ISSN 2319–8656 (Online), Volume 3, Issue 9, Pages 569 - 578, 2014, DOI: 10.7753/IJCATR0309.1008 DOI: https://doi.org/10.7753/IJCATR0309.1008
Apoorva Dwivedi, Basant Ballabh Dumka, Nikhat Akhtar, Ms Farah Shan, Yusuf Perwej, “Tropical Convolutional Neural Networks (TCNNs) Based Methods for Breast Cancer Diagnosis”, International Journal of Scientific Research in Science and Technology (IJSRST), Print ISSN: 2395-6011, Online ISSN: 2395-602X, Volume 10, Issue 3, Pages 1100 -1116, May-June- 2023, DOI: 10.32628/IJSRST523103183 DOI: https://doi.org/10.32628/IJSRST523103183
Du, S.; Li, T.; Yang, Y.; Horng, S.J. Deep air quality forecasting using hybrid deep learning framework. IEEE Trans. Knowl. Data Eng. 2019, 33, 2412–2424 DOI: https://doi.org/10.1109/TKDE.2019.2954510
Gilik, A.; Ogrenci, A.S.; Ozmen, A. Air quality prediction using CNN+ LSTM-based hybrid deep learning architecture. Environ. Sci. Pollut. Res. 2022, 29, 11920–11938 DOI: https://doi.org/10.1007/s11356-021-16227-w
Neha Kulshrestha, Nikhat Akhtar, Yusuf Perwej, “Deep Learning Models for Object Recognition and Quality Surveillance”, Accepted International Conference on Emerging Trends in IoT and Computing Technologies (ICEICT-2022), ISBN 978-10324-852-49, SCOPUS, Routledge, Taylor & Francis, CRC Press, Chapter 75, pages 508-518, Goel Institute of Technology & Management, Lucknow, May 2022
Firoj Parwej, N. Akhtar, Y. Perwej, “An Empirical Analysis of Web of Things (WoT)”, International Journal of Advanced Research in Computer Science (IJARCS), ISSN: 0976-5697, Volume 10, No. 3, Pages 32-40, May 2019., DOI: 10.26483/ijarcs.v10i3.6434 DOI: https://doi.org/10.26483/ijarcs.v10i3.6434
Y. Perwej, Firoj Parwej, N. Akhtar, “An Intelligent Cardiac Ailment Prediction Using Efficient ROCK Algorithm and K- Means & C4.5 Algorithm”, European Journal of Engineering Research and Science (EJERS), Bruxelles, Belgium, ISSN: 2506-8016, Vol. 3, No. 12, Pages 126 – 134, 2018, DOI:10.24018/ejers.2018.3.12.989 DOI: https://doi.org/10.24018/ejers.2018.3.12.989
Aram, S.A.; Nketiah, E.A.; Saalidong, B.M.; Wang, H.; Afitiri, A.R.; Akoto, A.B.; Lartey, P.O. Machine Learning-Based Prediction of Air Quality Index and Air Quality Grade: A Comparative Analysis. Int. J. Environ. Sci. Technol. 2024, 21, 1345–1360 DOI: https://doi.org/10.1007/s13762-023-05016-2
Guler, E.; Ozcan, B. PM2.5 Concentration Prediction Based on Winters’ and Fourier Analysis with Least Squares Methods in Cerkezkoy district of Tekirda˘ g. Int. J. Environ. Pollut. Environ. Model. 2021, 4, 17–27
R. Priyadarshini, Naim Shaikh, Rakesh Kumar Godi, Yusuf Perwej, P.K. Dhal, Rajeev Sharma, “IoT-Based Power Control Systems Framework for Healthcare Applications” , Measurement: Sensors,ELSEVIER, ScienceDirect, SCIE, Web of Science, SCOPUS, ISSN 2665- 9174, Volume 25, Pages 1-6, January 2023 DOI: 10.1016/j.measen.2022.100660 DOI: https://doi.org/10.1016/j.measen.2022.100660
Asif Perwej, K. P. Yadav, Vishal Sood, Yusuf Perwej, “An Evolutionary Approach to Bombay Stock Exchange Prediction with Deep Learning Technique”, IOSR Journal of Business and Management (IOSR-JBM), e-ISSN: 2278-487X, p-ISSN: 2319-7668, USA, Volume 20, Issue 12, Ver. V, Pages 63-79, December. 2018., DOI: 10.9790/487X-2012056379
Y. Perwej, Nikhat Akhtar, Firoj Parwej, “The Kingdom of Saudi Arabia Vehicle License Plate Recognition using Learning Vector Quantization Artificial Neural Network”, International Journal of Computer Applications (IJCA), USA, ISSN 0975 – 8887, Volume 98, No.11, Pages 32 – 38, 2014, DOI: 10.5120/17230-7556 DOI: https://doi.org/10.5120/17230-7556
Asif Perwej, Y. Perwej, N. Akhtar, and Firoj Parwej, “A FLANN and RBF with PSO Viewpoint to Identify a Model for Competent Forecasting Bombay Stock Exchange COMPUSOFT, SCOPUS, An International Journal of Advanced Computer Technology, 4 (1), Volume-IV, Issue-I, Pages 1454-1461, January-2015, DOI: 10.6084/ijact.v4i1.60
Pagano, E.; Barbierato, E.A. Time Series Approach to Smart City Transformation: The Problem of Air Pollution in Brescia. AI 2024, 5, 17–37 DOI: https://doi.org/10.3390/ai5010002
Li, Y.; Guo, J.; Sun, S.; Li, J.; Wang, S.; Zhang, C. Air quality forecasting with artificial intelligence techniques: A scientometric and content analysis. Environ. Model. Softw. 2022, 149, 105329 DOI: https://doi.org/10.1016/j.envsoft.2022.105329
Farheen Siddiqui, Homa Rizvi, Dr. Yusuf Perwej, Shamim Ahmad, Dr. Nikhat Akhtar, “Leveraging AI for Social Impact in Environmental Sustainability”, International Journal of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN: 2395-1990, Volume 12, No. 4, Pages 253-266, 2025, DOI: 10.32628/IJSRSET2512506 DOI: https://doi.org/10.32628/IJSRSET2512506
Jurado X, Reiminger N, Benmoussa M, et al. (2022). Deep learning methods evaluation to predict air quality based on Computational Fluid Dynamics. Expert System Applications 203: 117294 DOI: https://doi.org/10.1016/j.eswa.2022.117294
P. Jiang, C. Li, R. Li, and H. Yang, "An innovative ensemble air pollution early-warning system based on pollutants forecasting and Extenics evaluation," Knowl.-Based Syst., Vol.164, pp.174-192, Jan. 2019 DOI: https://doi.org/10.1016/j.knosys.2018.10.036
Downloads
Published
Issue
Section
License
Copyright (c) 2026 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0