Chitinase-Mediated Suppression of Groundnut Stem Rot Pathogen (Sclerotium rolfsii Sacc.) by Bacillus amyloliquefaciens RRR16
DOI:
https://doi.org/10.32628/IJSRST26138Keywords:
Sclerotium rolfsii, Bacillus amyloliquefaciens RRR16, Chitinase, Biocontrol, Groundnut, Stem rotAbstract
Groundnut (Arachis hypogaea L.) is one of the most important oilseed crops, but its production is severely affected by stem rot disease caused by Sclerotium rolfsii. The present study investigates the potential of a chitinase-producing Bacillus amyloliquefaciens strain GR16 for biological control of S. rolfsii. The isolate was obtained from rhizospheric soil of healthy groundnut plants and identified through morphological, biochemical, and molecular characterization. B. amyloliquefaciens RRR16 exhibited strong chitinolytic activity on colloidal chitin agar plate and significantly inhibited the mycelial growth of S. rolfsii in a dual culture assay with 92.86 % inhibition. The results indicate that B. amyloliquefaciens RRR16, through its chitinolytic mechanism, can serve as an efficient biocontrol agent for sustainable management of groundnut stem rot disease.
Downloads
References
Akash, A. U., Ramya, V., Uma Devi, G., Pushpavalli, S. N. C. V. L., & Triveni, S. (2022). Antagonist activities of native rhizosphere micro-flora against groundnut stem rot pathogen, Sclerotium rolfsii Sacc. Egyptian Journal of Biological Pest Control, 32(1), 133. https://doi.org/10.1186/s41938-022-00631-6 DOI: https://doi.org/10.1186/s41938-022-00631-6
Alemu, F., Tamiru, T., Berhane, N., & Gemeda, T. (2024). Isolation and Characterization of Bacillus thuringiensis from Soil and Water and Laboratory Testing of Their Insecticidal Activity against Spodoptera furgiperda (Lepidoptera: Noctuidae) in Gondar, North Western Ethiopia. EAS Journal of Biotechnology and Genetics. 6(6), 108 -125. https://doi.org/10.36349/easjbg.2024.v06i06.001 DOI: https://doi.org/10.36349/easjbg.2024.v06i06.001
Ambika, S., Chavan, S., Jayalakshmi, S. K., Raghavendra, B. T., & Rajanna, B. (2023). Status of Stem Rot Incidence of Groundnut Caused by Sclerotium rolfsii in Northern Eastern Karnataka. Journal of Oilseeds Research, 40 (Special issue). https://doi.org/10.56739/9b80bf61. DOI: https://doi.org/10.56739/9b80bf61
Babu, G. N., & Deepika, D. S. (2022). Survey for the incidence of stem rot (Sclerotium rolfsii Sacc) of groundnut in Andhra Pradesh. Agricultural Science Digest-A Research Journal, 42(5), 592-597. DOI: https://doi.org/10.18805/ag.D-5507
Boro, M., Sannyasi, S., Chettri, D., & Verma, A. K. (2022). Microorganisms in biological control strategies to manage microbial plant pathogens: a review. Archives of microbiology, 204(11), 666. https://doi.org/10.1007/s00203-022-03279-w DOI: https://doi.org/10.1007/s00203-022-03279-w
Cappuccino, J. G., & Sherman, N. (2013). Microbiology: a laboratory manual. Pearson Higher Ed.
Castillo, H. F., Reyes, C. F., Morales, G. G., Herrera, R. R., & Aguilar, C. (2013). Biological control of root pathogens by plant-growth promoting Bacillus spp. Weed and pest control-conventional and new challenges, 79-103. http://dx.doi.org/10.5772/54229 DOI: https://doi.org/10.5772/54229
Chang, Y., Dong, Q., Zhang, L., Goodwin, P. H., Xu, W., Xia, M., ... & Yang, L. (2025). Peanut growth promotion and biocontrol of blight by Sclerotium rolfsii with rhizosphere bacterium, Bacillus siamensis YB-1632. Agronomy, 15(3), 568. DOI: https://doi.org/10.3390/agronomy15030568
Chilcott, C. N., & Wigley, P. J. (1993). Isolation and toxicity of Bacillus thuringiensis from soil and insect habitats in New Zealand. Journal of Invertebrate Pathology, 61(3), 244-247. https://doi.org/10.1006/jipa.1993.1047 DOI: https://doi.org/10.1006/jipa.1993.1047
Chowdary, G. B. S. M., Jameema, G., & Charishma, K. V. (2024). Collar and stem rot pathogen-Sclerotium rolfsii: A review. Plant Archives, 24(1), 67-72. DOI: https://doi.org/10.51470/PLANTARCHIVES.2024.v24.no.1.010
Cook, R. J., & Baker, K. F. (1983). The nature and practice of biological control of plant pathogens (pp. 539-pp).
Deepika, B., Sheela, J., Indra, N., Kalaiyarasi, R., & Navamaniraj, K. N. (2025). Integrated approach for managing groundnut stem rot caused by Sclerotium rolfsii Sacc. Plant Science Today. 12(1): 1-12. https://doi.org/10.14719/pst.3995 DOI: https://doi.org/10.14719/pst.3995
Dennis, C., & Webster, J. (1971). Antagonistic properties of species-groups of Trichoderma: I. Production of non-volatile antibiotics. Transactions of the British Mycological Society, 57(1), 25-39. https://doi.org/10.1016/S0007-1536(71)80077-3. DOI: https://doi.org/10.1016/S0007-1536(71)80077-3
El-Saadony, M. T., Saad, A. M., Soliman, S. M., Salem, H. M., Ahmed, A. I., Mahmood, M., ... & AbuQamar, S. F. (2022). Plant growth-promoting microorganisms as biocontrol agents of plant diseases: Mechanisms, challenges and future perspectives. Frontiers in plant science, 13, 923880. https://doi.org/10.3389/fpls.2022.923880 DOI: https://doi.org/10.3389/fpls.2022.923880
Eslami, A. A., Khodaparast, S. A., Mousanejad, S., & Dehkaei, F. P. (2015). Evaluation of the virulence of Sclerotium rolfsii isolates on Arachis hypogaea and screening for resistant genotypes in greenhouse conditions. Hellenic Plant Protection Journal 8, 1-11. https://doi.org/10.1515/hppj-2015-0001 DOI: https://doi.org/10.1515/hppj-2015-0001
Etesami, H., Jeong, B. R., & Glick, B. R. (2023). Biocontrol of plant diseases by Bacillus spp. Physiological and Molecular Plant Pathology, 126, 102048. https://doi.org/10.1016/j.pmpp.2023.102048 DOI: https://doi.org/10.1016/j.pmpp.2023.102048
Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., & Williams, S. T. (1994). Bergey's Manual of determinate bacteriology, Nineth edition. The Williams and Wilkins Comp., Baltimore.
Hsu, S. C., & Lockwood, J. (1975). Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Applied microbiology, 29(3), 422-426. DOI: https://doi.org/10.1128/am.29.3.422-426.1975
Khan, I. H., & Arshad Javaid, A. J. (2015). Chemical control of collar rot disease of chickpea. Pakistan Journal of Phytopathology, 27(01), 61- 68.
Kumar, A., Prakash, A., and Johri, B. N. (2011). “Bacillus as PGPR in crop ecosystem,” in Bacteria in Agrobiology: Crop Ecosystems, ed. D. Maheshwari (Berlin: Springer), 123–125. https://doi.org/10.1007/978-3-642-18357-7_2 DOI: https://doi.org/10.1007/978-3-642-18357-7_2
Kumar, N., Dagla, M. C., Ajay, B. C., Jadon, K. S., & Thirumalaisamy, P. P. (2013). Sclerotium stem rot: A threat to groundnut production. Popular Kheti, 1(3), 26-30.
Kumar, P., Dubey, R. C., & Maheshwari, D. K. (2012). Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological research, 167(8), 493-499. DOI: https://doi.org/10.1016/j.micres.2012.05.002
Mardanova, A. M., Hadieva, G. F., Lutfullin, M. T., Khilyas, I. V. E., Minnullina, L. F., Gilyazeva, A. G., ... & Sharipova, M. R. (2016). Bacillus subtilis strains with antifungal activity against the phytopathogenic fungi. Agricultural Sciences, 8(1), 1-20. http://dx.doi.org/10.4236/as.2017.81001 DOI: https://doi.org/10.4236/as.2017.81001
Mayee, C.D and Datar, V.V. (1988). Diseases of Groundnut in the Tropics. Tropical Plant Pathology, 5, 85-118.
Miljaković, D., Marinković, J., & Balešević-Tubić, S. (2020). The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms, 8(7), 1037. https://doi.org/10.3390/microorganisms8071037. DOI: https://doi.org/10.3390/microorganisms8071037
Muyzer, G., De Waal, E. C., & Uitterlinden, A. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and environmental microbiology, 59(3), 695-700. DOI: https://doi.org/10.1128/aem.59.3.695-700.1993
Nagrale, D. T., Chaurasia, A., Kumar, S., Gawande, S. P., Hiremani, N. S., Shankar, R., ... & Prasad, Y. G. (2023). PGPR: the treasure of multifarious beneficial microorganisms for nutrient mobilization, pest biocontrol and plant growth promotion in field crops. World Journal of Microbiology and Biotechnology, 39(4), 100. https://doi.org/10.1007/s11274-023-03536-0 DOI: https://doi.org/10.1007/s11274-023-03536-0
Patra, G. K., Acharya, G. K., Panigrahi, J., Mukherjee, A. K., & Rout, G. R. (2023). The soil-borne fungal pathogen Athelia rolfsii: past, present, and future concern in legumes. Folia Microbiologica, 68(5), 677-690. DOI: https://doi.org/10.1007/s12223-023-01086-4
Patra, S., Verma, N., Priya, S., Gupta, A., & Gupta, V. (2024). Microbes as Biocontrol Agents for Sustainable Development. In Microbial approaches for sustainable green technologies (pp. 196-218). CRC Press. https://doi.org/10.1201/97810034076683-10 DOI: https://doi.org/10.1201/9781003407683-10
Prapagdee, B., Kuekulvong, C., & Mongkolsuk, S. (2008). Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. International journal of biological sciences, 4(5),330-337. https://doi.org/10.7150/ijbs.4.330 DOI: https://doi.org/10.7150/ijbs.4.330
Ramanjineyulu, P., Viswanath, K., Nagamani, P., & Kumar, N. K. (2021). Evaluation of rhizospheric antagonistic microorganisms and fungicides against pod rot associated pathogens of groundnut (Arachis hypogaea L.). Pharma Innov J, 10(5), 374-379.
Raut, L. S., Dalvi, S. M., & Rakh, R. R. (2023). Bacillus amyloliquefaciens subsp. amyloliquefaciens RLS19 as a multifarious source of potent antibiotics and other secondary metabolites for biocontrol of fusarium wilt disease in Bt-cotton. Res. Jr. Agril. Sci, 15(1), 109-121.
Rawlings, D. E. (1995). Restriction enzyme analysis of 16S rRNA genes for the rapid identification of Thiobacillus ferrooxidans, Thiobacillus thiooxidans and Leptospirillum ferrooxidans strains in leaching environments. Biohydrometallurgical processing, 2, 9-17.
Safni, I., & Antastia, W. (2018). In vitro antagonism of five rhizobacterial species against Athelia rolfsii collar rot disease in soybean. Open Agriculture, 3(1). https://doi.org/10.1515/opag-2018-0028 DOI: https://doi.org/10.1515/opag-2018-0028
Santhosh, C. R., Mahadevakumar, S., Nuthan, B. R., Bharatha, M., Parashiva, J., Mahesh, M., ... & Satish, S. (2024). Multifaceted growth promotion and biocontrol of Agroathelia rolfsii and induction of defense mechanism by Bacillus amyloliquefaciens SS‐CR10 on chilli. Physiologia Plantarum, 176(6), e14627. https://doi.org/10.1111/ppl.14627 DOI: https://doi.org/10.1111/ppl.14627
Sarangi, T., & Ramakrishnan, S. (2023). Biocontrol potential and mechanism of Bacillus ssp. against Phytopathogens: a review. International Journal of Environment and Climate Change, 13(7), 512-527. https://doi.org/10.9734/IJECC/2023/v13i71904 DOI: https://doi.org/10.9734/ijecc/2023/v13i71904
Sarvani, B., & Reddy, R. S. (2013). In vitro screening of native Bacillus isolates for plant growth promoting attributes. International Journal of Bio-resource and Stress Management, 4(2s), 298-303.
Skidmore, A. M., & Dickinson, C. H. (1976). Colony interactions and hyphal interference between Septoria nodorum and phylloplane fungi. Transactions of the British Mycological Society, 66(1), 57-64. https://doi.org/10.1016/S0007-1536(76)80092-7 DOI: https://doi.org/10.1016/S0007-1536(76)80092-7
Swaroopa, Z. M., & Madhuri, R. J. (2021). Bio-control activity of plant growth promoting rhizobacteria on Sclerotium rolfsii. Plant Arch, 21(1), 379-383. https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.052 DOI: https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.052
Tyagi, A., Lama Tamang, T., Kashtoh, H., Mir, R. A., Mir, Z. A., Manzoor, S., ... & Ali, S. (2024). A review on biocontrol agents as sustainable approach for crop disease management: applications, production, and future perspectives. Horticulturae, 10(8), 805. https://doi.org/10.3390/horticulturae10080805. DOI: https://doi.org/10.3390/horticulturae10080805
Vaniya, R. G., Singh, P., & Deshmukh, A. J. (2022). Variability among the different isolates of Sclerotium rolfsii Sacc. causing Stem Rot of Indian Bean. Biological Forum14, 757-765.
Yaqub, F., & Shahzad, S. (2006). Effect of fungicides on in vitro growth of Sclerotium rolfsii. Pakistan Journal of Botany, 38(3), 881.
Ziedan, E. H. E., & El-Mohamedy, R. S. R. (2008). Application of Pseudomonas fluorescens for controlling root-rot disease of grapevine. Research Journal of Agriculture and Biological Sciences, 4(5), 346-353.
Zmora-Nahum, S., Danon, M., Hadar, Y., & Chen, Y. (2008). Chemical properties of compost extracts inhibitory to germination of Sclerotium rolfsii. Soil Biology and Biochemistry, 40(10), 2523-2529. DOI: https://doi.org/10.1016/j.soilbio.2008.06.025
Downloads
Published
Issue
Section
License
Copyright (c) 2026 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0