Biosynthesis, Characterization, and Antifungal Activity of Copper Oxide Nanoparticles Using Myrtaceae Plant Extracts
DOI:
https://doi.org/10.32628/IJSRST26139Keywords:
Green synthesis, CuO nanoparticles, Myrtaceae, Candida albicansAbstract
Copper oxide nanoparticles (CuO NPs) were biogenically synthesized using aqueous extracts from Psidium guajava, Syzygium cumini, and Syzygium aromaticum, which are all members of the Myrtaceae family. Characterization was performed utilizing UV-Vis, FTIR, XRD, and SEM-EDS, confirming the synthesis of nanoparticles. The CuO nanoparticles exhibited significant antifungal activity against Candida albicans using the agar well diffusion method. The extract of Syzygium aromaticum-mediated nanoparticles demonstrated the highest bioactivity.
Downloads
References
Sharma, V.K. et al., Adv. Colloid Interface Sci., 145(1–2), 83–96 (2009). DOI: https://doi.org/10.1016/j.cis.2008.09.002
Nasrollahzadeh, M. et al., J. Mol. Liq., 253, 228–232 (2018). DOI: https://doi.org/10.3917/pour.232.0253
Theivasanthi, T., Alagar, M., Nano Biomed. Eng., 4(2), 58–65 (2012). DOI: https://doi.org/10.5101/nbe.v4i2.p58-65
El-Naggar, M.E. et al., Sci. Rep., 7, 13043 (2017). DOI: https://doi.org/10.1038/srep42129
Iravani, S., Green Chem., 13(10), 2638–2650 (2011). DOI: https://doi.org/10.1039/c1gc15386b
Mittal, A.K. et al., Biotechnol. Adv., 31(2), 346–356 (2013). DOI: https://doi.org/10.1016/j.biotechadv.2013.01.003
Raghunandan, D. et al., Colloids Surf. B Biointerfaces, 105, 342–346 (2013). DOI: https://doi.org/10.1016/j.colsurfb.2012.07.036
Cortes-Rojas, D.F. et al., Asian Pac. J. Trop. Biomed., 4(2), 90–96 (2014).
Chandra, H. et al., Environ. Nanotechnol. Monit. Manag., 9(4), 523 (2019).
Javed, R. et al., Arab. J. Chem., 14(1), 102924 (2021). DOI: https://doi.org/10.1016/j.arabjc.2020.102924
Hajipour, M.J. et al., TrAC Trends Anal. Chem., 30(10), 1585–1598 (2011). DOI: https://doi.org/10.1016/j.trac.2011.04.023
Ruparelia, J.P. et al., Acta Biomater., 4(3), 707–716 (2008). DOI: https://doi.org/10.1016/j.actbio.2007.11.006
Jain, D. et al., Dig. J. Nanomater. Biostruct., 4(3), 557–563 (2009).
Prabhu, S., Poulose, E.K., Int. Nano Lett., 2, 32 (2012). DOI: https://doi.org/10.1186/2228-5326-2-32
Alavi, M., Karimi, N., Biometals, 34(3), 437–453 (2021). DOI: https://doi.org/10.1007/s10534-020-00264-y
Huang, J. et al., Colloids Surf. A Physicochem. Eng. Asp., 371(1–3), 122–126 (2010).
Awwad, A.M. et al., Green Sustain. Chem., 2(3), 141–147 (2012).
Song, J.Y., Kim, B.S., Bioprocess Biosyst. Eng., 32(1), 79–84 (2009). DOI: https://doi.org/10.1007/s00449-008-0224-6
Sathishkumar, M. et al., Colloids Surf. B Biointerfaces, 88(1), 334–339 (2011). DOI: https://doi.org/10.1016/j.colsurfb.2011.07.011
Gharagozlou, M., J. Alloys Compd., 491(1–2), 484–487 (2010). DOI: https://doi.org/10.1016/j.jallcom.2009.10.240
Ramesh, P.S. et al., Dig. J. Nanomater. Biostruct., 7(3), 1311–1319 (2012).
Barabadi, H. et al., Artif. Cells Nanomed. Biotechnol., 46(sup3), S1047–S1058 (2018).
Renugadevi, K. et al., Mater. Today: Proc., 33, 3548–3554 (2020).
Prasad, K.S. et al., Spectrochim. Acta A Mol. Biomol. Spectrosc., 91, 293–297 (2012).
Ahmed, S. et al., Nanotechnol. Sci. Appl., 9, 1–16 (2016).
Khatoon, N. et al., Adv. Nat. Sci. Nanosci. Nanotechnol., 8, 045014 (2017). DOI: https://doi.org/10.1088/2043-6254/aa92b1
Baral, A. et al., J. Saudi Chem. Soc., 25(6), 101307 (2021). DOI: https://doi.org/10.1016/j.jscs.2021.101307
Ramesh, M. et al., J. Photochem. Photobiol. B, 173, 43–49 (2017).
Singh, J. et al., Artif. Cells Nanomed. Biotechnol., 44(1), 1569–1577 (2016).
Verma, S. et al., Appl. Nanosci., 8(6), 1639–1646 (2018).
Downloads
Published
Issue
Section
License
Copyright (c) 2026 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0