Designing a Data-Driven Clinical Audit Model for Quality Improvement in Healthcare Service Delivery

Authors

  • Damilola Oluyemi Merotiwon Department of Healthcare Administration, University of the Potomac, Washington D.C. USA Author
  • Opeyemi Olamide Akintimehin Department of Human Nutrition and Dietetics, University of Ibadan, Nigeria Author
  • Opeoluwa Oluwanifemi Akomolafe Independent Researcher, UK Author

DOI:

https://doi.org/10.32628/IJSRST52310377

Keywords:

Clinical audits, data-driven models, healthcare quality, electronic health records, predictive analytics, performance improvement

Abstract

Clinical audits are essential mechanisms for evaluating and enhancing the quality of healthcare service delivery. However, traditional audit processes often suffer from inefficiencies due to fragmented data sources, manual evaluations, and lack of real-time feedback mechanisms. With the increasing availability of electronic health data and analytics tools, there is an urgent need for a model that integrates these assets into a coherent, data-driven clinical audit framework. This paper proposes a comprehensive model that utilizes structured health data, predictive analytics, and feedback loops to enhance clinical audit efficacy across diverse healthcare settings. The model was developed using a design science approach and evaluated through pilot implementations in three tertiary hospitals. Results show measurable improvements in care delivery, compliance with clinical guidelines, and patient outcomes. The study underscores the transformative potential of data-driven audits in advancing evidence-based quality improvement practices and provides a replicable framework for healthcare institutions aiming to institutionalize continuous performance monitoring.

📊 Article Downloads

References

C. N. Nwokedi et al., “Virtual Reality (VR) and Augmented Reality (AR) in Medicine: A review of clinical applications,” Int. J. Sci. Res. Sci. Eng. Technol., vol. 11, no. 6, pp. 438–449, 2024.

W. Ip, P. Prahalad, J. Palma, and J. H. Chen, “A data-driven algorithm to recommend initial clinical workup for outpatient specialty referral: Algorithm development and validation using electronic health record data and expert surveys,” JMIR Med. Inform., vol. 10, no. 3, p. e30104, 2022.

A. Y. Forkuo, A. Y. Mustapha, A. O. Mbata, B. O. Tomoh, M. C. Kelvin-Agwu, and T. O. Kolawole, “The Role of Mental Health Integration in Primary Healthcare: A Policy and Implementation Framework,” 2024, [Online]. Available: https://www.researchgate.net/profile/Adelaide-Forkuo/publication/390331550_The_Role_of_Mental_Health_Integration_in_Primary_Healthcare_A_Policy_and_Implementation_Framework/links/67eaaeee76d4923a1ae95da7/The-Role-of-Mental-Health-Integration-in-Primary-Healthcare-A-Policy-and-Implementation-Framework.pdf

W. Hsu, S. X. Han, C. W. Arnold, A. A. Bui, and D. R. Enzmann, “A data-driven approach for quality assessment of radiologic interpretations,” J. Am. Med. Inform. Assoc., vol. 23, no. e1, pp. e152–e156, 2016.

Evangel Chinyere Anyanwu, Jeremiah Olawumi Arowoogun, Ifeoma Pamela Odilibe, Opeoluwa Akomolafe, Chinyere Onwumere, and Jane Osareme Ogugua, “The role of biotechnology in healthcare: A review of global trends,” World J. Adv. Res. Rev., vol. 21, no. 1, pp. 2740–2752, Jan. 2024, doi: 10.30574/wjarr.2024.21.1.0382.

J. Oh et al., “A generalizable, data-driven approach to predict daily risk of Clostridium difficile infection at two large academic health centers,” Infect. Control Hosp. Epidemiol., vol. 39, no. 4, pp. 425–433, 2018.

M. C. Kelvin-Agwu, M. O. Adelodun, G. T. Igwama, and E. C. Anyanwu, “The role of biomedical engineers in enhancing patient care through efficient equipment management,” Int. J. Front. Med. Surg. Res., vol. 6, no. 1, pp. 11–18, 2024.

S. White, “A review of big data in health care: challenges and opportunities,” Open Access Bioinforma., p. 13, Oct. 2014, doi: 10.2147/OAB.S50519.

M. C. Kelvin-Agwu, M. O. Adelodun, G. T. Igwama, and E. C. Anyanwu, “The Impact of Regular Maintenance on the Longevity and Performance of Radiology Equipment,” 2024, [Online]. Available: https://www.researchgate.net/profile/Mojeed-Adelodun/publication/384638056_The_Impact_of_Regular_Maintenance_on_the_Longevity_and_Performance_of_Radiology_Equipment/links/6700ad91b753fa724d59657d/The-Impact-of-Regular-Maintenance-on-the-Longevity-and-Performance-of-Radiology-Equipment.pdf

S. Bayyapu, R. R. Turpu, and R. R. Vangala, “Advancing healthcare decision-making: The fusion of machine learning, predictive analytics, and cloud technology,” Int. J. Comput. Eng. Technol. IJCET, vol. 10, no. 5, pp. 157–170, 2019.

Q. E. Enahoro, J. O. Ogugua, E. C. Anyanwu, O. Akomolafe, I. P. Odilibe, and A. I. Daraojimba, “The impact of electronic health records on healthcare delivery and patient outcomes: A review,” World J. Adv. Res. Rev., vol. 21, no. 2, pp. 451–460, 2024.

E. Z. SNIGDHA, M. R. HOSSAIN, and S. MAHABUB, “AI-powered healthcare tracker development: advancing real-time patient monitoring and predictive analytics through data-driven intelligence,” J. Comput. Sci. Technol. Stud., vol. 5, no. 4, pp. 229–239, 2023.

T. T. Omaghomi, “Telemedicine in rural Africa: A review of accessibility and impact,” 2024.

S. Mullankandy, S. Mukherjee, and B. S. Ingole, “Applications of AI in Electronic Health Records, Challenges, and Mitigation Strategies,” in 2024 International Conference on Computer and Applications (ICCA), IEEE, 2024, pp. 1–7. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/10927863/

Damilola Osamika, Adelaide Yeboah Forkuo, Ashiata Yetunde Mustapha, Ernest Chinonso Chianumba, Leesi Saturday Komi, “Systematic Review of Global Best Practices in Multinational Public Health Program Implementation and Impact Assessment‬.” [Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pZekPIgAAAAJ&pagesize=80&citation_for_view=pZekPIgAAAAJ:blknAaTinKkC‬

O. Ozonze, P. J. Scott, and A. A. Hopgood, “Automating Electronic Health Record Data Quality Assessment,” J. Med. Syst., vol. 47, no. 1, p. 23, Feb. 2023, doi: 10.1007/s10916-022-01892-2.

M. C. Kelvin-Agwu, M. O. Adelodun, G. T. Igwama, and E. C. Anyanwu, “Strategies for optimizing the management of medical equipment in large healthcare institutions,” Strategies, vol. 20, no. 9, pp. 162–170, 2024.

J. D. Gates, Y. Yulianti, and G. A. Pangilinan, “Big data analytics for predictive insights in healthcare,” Int. Trans. Artif. Intell., vol. 3, no. 1, pp. 54–63, 2024.

O. S. Soyege et al., “Strategic Planning in Healthcare: A Framework for Sustainable Growth and Service Excellence,” Int. J. Multidiscip. Res. Growth Eval., vol. 5, no. 6, pp. 1579–1583, 2024.

Y. Wang, L. Kung, and T. A. Byrd, “Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations,” Technol. Forecast. Soc. Change, vol. 126, pp. 3–13, 2018.

F. C. Okolo, E. A. Etukudoh, O. Ogunwole, and G. Omotunde, “Strategic Framework for Strengthening AML Compliance Across Cross-Border Transport, Shipping, and Logistics Channels”.

S. Suresh, “Big data and predictive analytics,” Pediatr Clin N Am, vol. 63, pp. 357–366, 2016.

S. V. Gbaraba, A. Y. Mustapha, B. O. Tomoh, A. O. Mbata, and A. Y. Forkuo, “SMART WEARABLE DEVICES FOR HEALTH MONITORING: A FOCUS ON RURAL HEALTHCARE,” Multidiscip. J. Eng. Technol. Sci., vol. 2, no. 1, 2025, [Online]. Available: https://academiconlinejournals.com/index.php/MJETS/article/view/297

A. F. Simpao, L. M. Ahumada, and M. A. Rehman, “Big data and visual analytics in anaesthesia and health care,” Br. J. Anaesth., vol. 115, no. 3, pp. 350–356, 2015.

S. V. GBARABA, A. Y. MUSTAPHA, B. OLAMIDE, A. O. TOMOH, and A. Y. FORKUO, “Smart Drug Delivery Systems: The Future of Precision Medicine,” IRE J., vol. 8, no. 9, pp. 821–829, 2025.

T. Al-Quraishi, N. Al-Quraishi, H. AlNabulsi, H. AL-Qarishey, and A. H. Ali, “Big data predictive analytics for personalized medicine: Perspectives and challenges,” Appl. Data Sci. Anal., vol. 2024, pp. 32–38, 2024.

C. N. Nwokedi et al., “Robotics in healthcare: A systematic review of robotic-assisted surgery and rehabilitation,” Int. J. Sci. Res. Sci. Technol., vol. 11, no. 6, pp. 1061–1074, 2024.

K. Chao, M. N. I. Sarker, I. Ali, R. R. Firdaus, A. Azman, and M. M. Shaed, “Big data-driven public health policy making: Potential for the healthcare industry,” Heliyon, vol. 9, no. 9, 2023, [Online]. Available: https://www.cell.com/heliyon/fulltext/S2405-8440(23)06889-5

Adelaide Yeboah Forkuo, Nura Ikhalea, Ernest Chinonso Chianumba, Ashiata Yetunde Mustapha, “Reviewing the Impact of AI in Improving Patient Outcomes through Precision Medicine‬.” [Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pZekPIgAAAAJ&pagesize=80&citation_for_view=pZekPIgAAAAJ:MXK_kJrjxJIC‬

S. Alnegheimish et al., “Cardea: An open automated machine learning framework for electronic health records,” in 2020 IEEE 7th International Conference on Data Science and Advanced Analytics (DSAA), IEEE, 2020, pp. 536–545. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9260104/

L. S. Komi, A. Y. Mustapha, A. Y. Forkuo, and D. Osamika, “Reviewing Pharmacovigilance Strategies Using Real-World Data for Drug Safety Monitoring and Management,” 2025, [Online]. Available: https://www.researchgate.net/profile/Leesi-Komi/publication/391109906_Reviewing_Pharmacovigilance_Strategies_Using_Real-World_Data_for_Drug_Safety_Monitoring_and_Management/links/680a907aded4331557396d6c/Reviewing-Pharmacovigilance-Strategies-Using-Real-World-Data-for-Drug-Safety-Monitoring-and-Management.pdf

L. S. Dhingra, M. Shen, A. Mangla, and R. Khera, “Cardiovascular care innovation through data-driven discoveries in the electronic health record,” Am. J. Cardiol., vol. 203, pp. 136–148, 2023.

A. Y. Mustapha et al., “Preventive Health Programs: Collaboration Between Healthcare Providers and Public Health Agencies,” Int. J. Pharma Growth Res. Rev., vol. 1, no. 6, pp. 41–47, 2024.

M. Manktelow, A. Iftikhar, M. Bucholc, M. McCann, and M. O’Kane, “Clinical and operational insights from data-driven care pathway mapping: a systematic review,” BMC Med. Inform. Decis. Mak., vol. 22, no. 1, p. 43, Dec. 2022, doi: 10.1186/s12911-022-01756-2.

A. O. Mbata et al., “Preventative Medicine and Chronic Disease Management: Reducing Healthcare Costs and Improving Long-Term Public Health,” Int. J. Multidiscip. Res. Growth Eval., vol. 5, no. 06, pp. 1584–1600, 2024.

C. V. Ibeh, O. A. Elufioye, T. Olorunsogo, O. F. Asuzu, N. L. Nduubuisi, and A. I. Daraojimba, “Data analytics in healthcare: A review of patient-centric approaches and healthcare delivery,” World J. Adv. Res. Rev., vol. 21, no. 02, pp. 1750–1760, 2024.

Akachukwu Obianuju Mbata 1* et al., “Preventative Medicine and Chronic Disease Management: Reducing Healthcare Costs and Improving Long-Term Public Health.” [Online]. Available: https://www.researchgate.net/profile/Olakunle-Soyege/publication/390694904_Preventative_Medicine_and_Chronic_Disease_Management_Reducing_Healthcare_Costs_and_Improving_Long-Term_Public_Health/links/67fb28eadf0e3f544f4102e5/Preventative-Medicine-and-Chronic-Disease-Management-Reducing-Healthcare-Costs-and-Improving-Long-Term-Public-Health.pdf

A. Lighterness, M. Adcock, L. A. Scanlon, and G. Price, “Data Quality–Driven Improvement in Health Care: Systematic Literature Review,” J. Med. Internet Res., vol. 26, p. e57615, 2024.

A. Y. FORKUO, S. V. GBARABA, A. YETUNDE, B. O. T. MUSTAPHA, and A. O. MBATA, “Preparedness and Response: Lessons Learned from Radiological Emergencies in Healthcare Settings,” 2025, [Online]. Available: https://www.researchgate.net/profile/Adelaide-Forkuo/publication/389983225_Preparedness_and_Response_Lessons_Learned_from_Radiological_Emergencies_in_Healthcare_Settings/links/67dafbc735f7044c9233be8b/Preparedness-and-Response-Lessons-Learned-from-Radiological-Emergencies-in-Healthcare-Settings.pdf

I. H. Sarker, “Data Science and Analytics: An Overview from Data-Driven Smart Computing, Decision-Making and Applications Perspective,” SN Comput. Sci., vol. 2, no. 5, p. 377, Sep. 2021, doi: 10.1007/s42979-021-00765-8.

K. Seun Adeyemo, A. Obianuju Mbata, and O. Destiny Balogun, “Pharmaceutical Waste Management and Reverse Logistics in the U.S. Enhancing Sustainability and Reducing Public Health Risks,” Int. J. Adv. Multidiscip. Res. Stud., vol. 4, no. 6, pp. 1720–1729, Dec. 2024, doi: 10.62225/2583049X.2024.4.6.4102.

P. K. Yeng, L. O. Nweke, A. Z. Woldaregay, B. Yang, and E. A. Snekkenes, “Data-Driven and Artificial Intelligence (AI) Approach for Modelling and Analyzing Healthcare Security Practice: A Systematic Review,” in Intelligent Systems and Applications, vol. 1250, K. Arai, S. Kapoor, and R. Bhatia, Eds., in Advances in Intelligent Systems and Computing, vol. 1250. , Cham: Springer International Publishing, 2021, pp. 1–18. doi: 10.1007/978-3-030-55180-3_1.

Mariatheresa Chinyeaka, Kelvin -Agwu, Mojeed Omotayo Adelodun, and Geneva Tamunobarafiri Igwama, “(PDF) Enhancing Biomedical Engineering Education: Incorporating Practical Training in Equipment Installation and Maintenance,” ResearchGate. [Online]. Available: https://www.researchgate.net/publication/384638057_Enhancing_Biomedical_Engineering_Education_Incorporating_Practical_Training_in_Equipment_Installation_and_Maintenance

I. A. Adeniran, C. P. Efunniyi, O. S. Osundare, and A. O. Abhulimen, “Data-driven decision-making in healthcare: Improving patient outcomes through predictive modeling,” Eng. Sci. Technol. J., vol. 5, no. 8, 2024, [Online]. Available: https://www.researchgate.net/profile/Angela-Abhulimen/publication/383561714_Data-driven_decision-making_in_healthcare_Improving_patient_outcomes_through_predictive_modeling/links/66ddac5a2390e50b2c769aa3/Data-driven-decision-making-in-healthcare-Improving-patient-outcomes-through-predictive-modeling.pdf

O. D. Balogun et al., “Patient-Centered Care Models: A Review of Their Influence on Healthcare Management Practices,” J. Front. Multidiscip. Res., vol. 5, no. 2, pp. 28–35, 2024.

M. R. Hribar et al., “Data-driven scheduling for improving patient efficiency in ophthalmology clinics,” Ophthalmology, vol. 126, no. 3, pp. 347–354, 2019.

Ernest Chinonso Chianumba, Nura Ikhalea, Ashiata Yetunde Mustapha, Adelaide Yeboah Forkuo, “NLP Models for Extracting Healthcare Insights from Unstructured Medical Text‬.” [Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pZekPIgAAAAJ&pagesize=80&citation_for_view=pZekPIgAAAAJ:5nxA0vEk-isC‬

B. O. T. S. V. Gbaraba, A. Y. Mustapha, A. O. Mbata, and A. Y. Forkuo, “Nanocarriers for Targeted Drug Delivery in Cancer Therapy: Innovations and Challenges”.

V. Tamraparani, “Data-Driven Strategies for Reducing Employee Health Insurance Costs: A Collaborative Approach with Carriers and Brokers,” Available SSRN 5117105, 2019, [Online]. Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5117105

M. C. Kelvin-Agwu, B. O. Tomoh, and A. Y. Forkuo, “Modeling a Low-Cost, Portable Hemodialysis Device for Underserved Communities,” 2025, [Online]. Available: https://www.multidisciplinaryfrontiers.com/uploads/archives/20250326185341_FMR-2025-1-022.1.pdf

R. R. Kothinti, “Deep learning in healthcare: Transforming disease diagnosis, personalized treatment, and clinical decision-making through AI-driven innovations,” 2024, [Online]. Available: https://www.academia.edu/download/121576498/WJARR_2024_3435.pdf

I. P. Odilibe, O. Akomolafe, J. O. Arowoogun, E. C. Anyanwu, C. Onwumere, and J. O. Ogugua, “Mental health policies: a comparative review between the USA and African nations,” Int. Med. Sci. Res. J., vol. 4, no. 2, pp. 141–157, 2024.

M. Afshar et al., “Deployment of real-time natural language processing and deep learning clinical decision support in the electronic health record: pipeline implementation for an opioid misuse screener in hospitalized adults,” JMIR Med. Inform., vol. 11, p. e44977, 2023.

J. O. Ogugua, C. C. Okongwu, O. O. Akomolafe, E. C. Anyanwu, and O. D. Daraojimba, “Mental health and digital technology: a public health review of current trends and responses,” Int. Med. Sci. Res. J., vol. 4, no. 2, pp. 108–125, 2024.

F. Cascini, F. Santaroni, R. Lanzetti, G. Failla, A. Gentili, and W. Ricciardi, “Developing a data-driven approach in order to improve the safety and quality of patient care,” Front. Public Health, vol. 9, p. 667819, 2021.

A. O. Mbata et al., “Machine learning for health informatics: An Overview,” 2024, [Online]. Available: https://www.multidisciplinaryfrontiers.com/uploads/archives/20250319122244_FMR-2025-1-014.1.pdf

LEESI SATURDAY KOMI, ASHIATA YETUNDE MUSTAPHA, ADELAIDE YEBOAH FORKUO, DAMILOLA OSAMIKA, “Lifestyle Intervention Models for Type 2 Diabetes: A Systematic Evidence-Based Conceptual Framework.” [Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pZekPIgAAAAJ&pagesize=80&citation_for_view=pZekPIgAAAAJ:-f6ydRqryjwC

Y. Ramakrishnaiah, N. Macesic, G. I. Webb, A. Y. Peleg, and S. Tyagi, “EHR-QC: A streamlined pipeline for automated electronic health records standardisation and preprocessing to predict clinical outcomes,” J. Biomed. Inform., vol. 147, p. 104509, 2023.

A. Y. Mustapha, T. O. Kolawole, A. O. Mbata, B. O. Tomoh, A. Y. Forkuo, and M. C. Kelvin-Agwu, “Leveraging Mobile Health (mHealth) Applications for Improving Maternal and Child Health Outcomes: A Cross-Regional Study,” 2024, [Online]. Available: https://www.researchgate.net/profile/Anfo-Pub-2/publication/390235301_Leveraging_Mobile_Health_mHealth_Applications_for_Improving_Maternal_and_Child_Health_Outcomes_A_Cross-Regional_Study/links/67ed44279b1c6c48776fd109/Leveraging-Mobile-Health-mHealth-Applications-for-Improving-Maternal-and-Child-Health-Outcomes-A-Cross-Regional-Study.pdf

T. Ménard, Y. Barmaz, B. Koneswarakantha, R. Bowling, and L. Popko, “Enabling Data-Driven Clinical Quality Assurance: Predicting Adverse Event Reporting in Clinical Trials Using Machine Learning,” Drug Saf., vol. 42, no. 9, pp. 1045–1053, Sep. 2019, doi: 10.1007/s40264-019-00831-4.

B. O. Tomoh et al., “Leadership in Healthcare: Building High-Performing Teams and Cultivating a Culture of Continuous Improvement,” 2024, [Online]. Available: https://www.multidisciplinaryfrontiers.com/uploads/archives/20250319120923_FMR-2025-1-013.1.pdf

N. T. Nwosu, S. O. Babatunde, and T. Ijomah, “Enhancing customer experience and market penetration through advanced data analytics in the health industry,” World J. Adv. Res. Rev., vol. 22, no. 3, pp. 1157–1170, 2024.

M. C. Kelvin-Agwu, M. O. Adelodun, G. T. Igwama, and E. C. Anyanwu, “Innovative approaches to the maintenance and repair of biomedical devices in resource-limited settings,” 2024, [Online]. Available: https://www.researchgate.net/profile/Mojeed-Adelodun/publication/384636158_Innovative_approaches_to_the_maintenance_and_repair_of_biomedical_devices_in_resource-limited_settings/links/6700a0309e6e82486f013421/Innovative-approaches-to-the-maintenance-and-repair-of-biomedical-devices-in-resource-limited-settings.pdf

T. T. Omaghomi, O. A. Elufioye, J. O. Ogugua, A. I. Daraojimba, and O. Akomolafe, “Innovations in hospital management: a review,” Int. Med. Sci. Res. J., vol. 4, no. 2, pp. 224–234, 2024.

H. Rehan, “Enhancing Early Detection and Management of Chronic Diseases With AI-Driven Predictive Analytics on Healthcare Cloud Platforms,” J. AI-Assist. Sci. Discov., vol. 4, no. 2, pp. 1–38, 2024.

O. S. Soyege et al., “Health informatics in developing countries: Challenges and opportunities”.

B. Alhmoud, D. Melley, N. Khan, T. Bonicci, R. Patel, and A. Banerjee, “Evaluating a novel, integrative dashboard for health professionals’ performance in managing deteriorating patients: a quality improvement project,” BMJ Open Qual., vol. 11, no. 4, p. e002033, 2022.

T. T. Omaghomi, O. Akomolafe, J. O. Ogugua, A. I. Daraojimba, and O. A. Elufioye, “Healthcare management in a post-pandemic world: lessons learned and future preparedness-a review,” Int. Med. Sci. Res. J., vol. 4, no. 2, pp. 210–223, 2024.

O. C. Anthony, E. Oluwagbade, A. Bakare, and B. Animasahun, “Evaluating the economic and clinical impacts of pharmaceutical supply chain centralization through AI-driven predictive analytics: comparative lessons from large-scale centralized procurement systems and implications for drug pricing, availability, and cardiovascular health outcomes in the US,” Int J Res Publ Rev, vol. 5, no. 10, pp. 5148–5161, 2024.

B. O. TOMOH, A. Y. MUSTAPHA, A. OBIANUJU, T. O. K. MBATA, A. Y. FORKUO, and M. C. KELVIN-AGWU, “Evaluating Health System Resilience: Lessons Learned from COVID-19 Pandemic Response Strategies,” 2024, [Online]. Available: https://www.researchgate.net/profile/Adelaide-Forkuo/publication/390193226_Evaluating_Health_System_Resilience_Lessons_Learned_from_COVID-19_Pandemic_Response_Strategies/links/67e3d027fe0f5a760f914624/Evaluating-Health-System-Resilience-Lessons-Learned-from-COVID-19-Pandemic-Response-Strategies.pdf

I. Dalhatu et al., “From Paper Files to Web-Based Application for Data-Driven Monitoring of HIV Programs: Nigeria’s Journey to a National Data Repository for Decision-Making and Patient Care,” Methods Inf. Med., vol. 62, no. 03/04, pp. 130–139, Sep. 2023, doi: 10.1055/s-0043-1768711.

O. D. Balogun et al., “Enhancing Operational Efficiency in Healthcare: The Role of Advanced Data Analytics,” Int. J. Pharma Growth Res. Rev., vol. 1, no. 6, pp. 33–40, 2024.

M. Giuffrè and D. L. Shung, “Harnessing the power of synthetic data in healthcare: innovation, application, and privacy,” NPJ Digit. Med., vol. 6, no. 1, p. 186, 2023.

A. Y. Mustapha, S. V. Gbaraba, B. O. Tomoh, A. O. Mbata, and A. Y. Forkuo, “Enhancing Maternal and Child Health in Rural Areas Through AI and Mobile Health Solutions”.

D. Bhati, M. S. Deogade, and D. Kanyal, “Improving patient outcomes through effective hospital administration: a comprehensive review,” Cureus, vol. 15, no. 10, 2023, [Online]. Available: https://www.cureus.com/articles/197936-improving-patient-outcomes-through-effective-hospital-administration-a-comprehensive-review.pdf

M. C. Kelvin-Agwu, A. Y. Mustapha, A. O. Mbata, B. O. Tomoh, and A. Y. Forkuo, “Development of Smart Insulin Delivery Systems for Improving Diabetes Management in Public Health,” Development, vol. 9, no. 3, pp. 19–32, 2025.

M. D. Ajegbile, J. A. Olaboye, C. C. Maha, and G. Tamunobarafiri, “Integrating business analytics in healthcare: Enhancing patient outcomes through data-driven decision making,” World J Biol Pharm Health Sci, vol. 19, pp. 243–50, 2024.

A. I. Daraojimba, D. Bihani, G. O. Osho, J. O. Omisola, C. Ubamadu, and E. A. Etukudoh, “Decentralized Autonomous Organizations (DAOs): A Conceptual Model for Community-Owned Banking and Financial Governance”.

O. O. Akomolafe, A. Y. Forkuo, O. Omotayo, E. Chinonso, A. Y. Mustapha, and E. Afrihyia, “Data-Driven Approaches to Optimize Long-Term Care for Aging Populations: A Review of Predictive Analytics”.

M. H. Rahman, M. K. S. Uddinb, K. M. R. Hossanc, and M. D. Hossaind, “The role of predictive analytics in early disease detection: a data-driven approach to preventive healthcare,” J. Learn. Sci., vol. 32, no. 2, p. 2024, 2024.

Jane Osareme Ogugua, Chinyere Onwumere, Jeremiah Olawumi Arowoogun, Evangel Chinyere Anyanwu, Ifeoma Pamela Odilibe, and Opeoluwa Akomolafe, “Data science in public health: A review of predictive analytics for disease control in the USA and Africa,” World J. Adv. Res. Rev., vol. 21, no. 1, pp. 2753–2769, Jan. 2024, doi: 10.30574/wjarr.2024.21.1.0383.

B. I. Adekunle, E. C. Chukwuma-Eke, E. D. Balogun, and K. O. Ogunsola, “Machine learning for automation: Developing data-driven solutions for process optimization and accuracy improvement,” Mach. Learn., vol. 2, no. 1, 2021, [Online]. Available: https://www.researchgate.net/profile/Anfo-Pub-2/publication/391050031_Machine_Learning_for_Automation_Developing_Data-Driven_Solutions_for_Process_Optimization_and_Accuracy_Improvement/links/681b6af9bd3f1930dd6d8615/Machine-Learning-for-Automation-Developing-Data-Driven-Solutions-for-Process-Optimization-and-Accuracy-Improvement.pdf

E. Afrihyia, O. Omotayo, A. Yetunde Mustapha, O. Oluwanifemi Akomolafe, A. Yeboah Forkuo, and E. Chinonso Chianumba, “Data Analytics in U.S. Public Health Policy: A Review of Applications in Healthcare Resource Allocation and Efficiency,” Int. J. Adv. Multidiscip. Res. Stud., vol. 4, no. 6, pp. 2253–2260, Dec. 2024, doi: 10.62225/2583049X.2024.4.6.4295.

A. J. Steele, S. C. Denaxas, A. D. Shah, H. Hemingway, and N. M. Luscombe, “Machine learning models in electronic health records can outperform conventional survival models for predicting patient mortality in coronary artery disease,” PloS One, vol. 13, no. 8, p. e0202344, 2018.

Jeremiah Olawumi Arowoogun, Jane Osareme Ogugua, Ifeoma Pamela Odilibe, Chinyere Onwumere, Evangel Chinyere Anyanwu, and Opeoluwa Akomolafe, “COVID-19 vaccine distribution: A review of strategies in Africa and the USA,” World J. Adv. Res. Rev., vol. 21, no. 1, pp. 2729–2739, Jan. 2024, doi: 10.30574/wjarr.2024.21.1.0381.

V. Curcin, T. Woodcock, A. J. Poots, A. Majeed, and D. Bell, “Model-driven approach to data collection and reporting for quality improvement,” J. Biomed. Inform., vol. 52, pp. 151–162, 2014.

LEESI SATURDAY KOMI, ASHIATA YETUNDE MUSTAPHA, ADELAIDE YEBOAH FORKUO, DAMILOLA OSAMIKA, “Conceptualizing the Integration of Digital Health Tools into Clinical Practice: A Review-Based Approach.” [Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pZekPIgAAAAJ&pagesize=80&citation_for_view=pZekPIgAAAAJ:qUcmZB5y_30C

J. Batani and M. S. Maharaj, “Towards data-driven pediatrics in Zimbabwe,” in 2022 international conference on artificial intelligence, big data, computing and data communication systems (IcABCD), IEEE, 2022, pp. 1–7. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/9855907/

Leesi Saturday Komi, Ashiata Yetunde Mustapha, Adelaide Yeboah Forkuo, Damilola Osamika, “Conceptual Framework for Predictive Analytics in Disease Detection: Insights from Evidence-Based Big Data Analysis‬.” [Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pZekPIgAAAAJ&pagesize=80&citation_for_view=pZekPIgAAAAJ:bEWYMUwI8FkC‬

M. S. A. Mazumder, “The transformative impact of big data in healthcare: Improving outcomes, safety, and efficiencies,” Glob. Mainstream J. Bus. Econ. Dev. Proj. Manag., vol. 3, no. 03, pp. 01–12, 2024.

O. S. Soyege et al., “Concept paper: Strategic healthcare administration and cost excellence for underserved communities (SHACE-UC)”.

M. D. Ajegbile, J. A. Olaboye, C. C. Maha, G. T. Igwama, and S. Abdul, “The role of data-driven initiatives in enhancing healthcare delivery and patient retention,” World J. Biol. Pharm. Health Sci., vol. 19, no. 1, pp. 234–242, 2024.

O. S. Soyege et al., “Comprehensive review of healthcare innovations in enhancing patient outcomes through advanced pharmacy practices,” Int. J. Sci. Res. Sci. Eng. Technol., vol. 11, no. 6, pp. 425–437, 2024.

S. T. Nuka, “The Role of AI Driven Clinical Research in Medical Device Development: A Data Driven Approach to Regulatory Compliance and Quality Assurance,” Glob. J. Med. Case Rep., vol. 2, no. 1, p. 1275, 2022.

Olakunle Saheed Soyege1 et al., “Comprehensive Review of Healthcare Innovations in Enhancing Patient Outcomes through Advanced Pharmacy Practices.” [Online]. Available: https://www.researchgate.net/profile/Adelaide-Forkuo/publication/389784414_Comprehensive_Review_of_Healthcare_Innovations_in_Enhancing_Patient_Outcomes_through_Advanced_Pharmacy_Practices/links/67d874e27d56ad0a0f05a03f/Comprehensive-Review-of-Healthcare-Innovations-in-Enhancing-Patient-Outcomes-through-Advanced-Pharmacy-Practices.pdf

B. O. Tomoh, A. Y. Mustapha, A. O. Mbata, M. C. Kelvin-Agwu, A. Y. Forkuo, and T. O. Kolawole, “Assessing the impact of telehealth interventions on rural healthcare accessibility: a quantitative study”.

D. Osamika, B. S. Adelusi, M. C. Kelvin-Agwu, A. Y. Mustapha, A. Y. Forkuo, and N. Ikhalea, “A Comprehensive Review of Predictive Analytics Applications in US Healthcare: Trends, Challenges, and Emerging Opportunities”.

T. T. Omaghomi, O. A. Elufioye, O. Akomolafe, E. C. Anyanwu, and I. P. Odilibe, “A comprehensive review of telemedicine technologies: past, present, and future prospects,” Int. Med. Sci. Res. J., vol. 4, no. 2, pp. 183–193, 2024.

Leesi Saturday Komi, Ashiata Yetunde Mustapha, Adelaide Yeboah Forkuo, Damilola Osamika, “A Conceptual Analysis of Mental Health Screening Implementation in Primary Healthcare Settings.” [Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pZekPIgAAAAJ&pagesize=80&citation_for_view=pZekPIgAAAAJ:e5wmG9Sq2KIC

A. Rosenfeld et al., “Big Data Analytics and AI in Mental Healthcare,” Mar. 12, 2019, arXiv: arXiv:1903.12071. doi: 10.48550/arXiv.1903.12071.

Nura Ikhalea, Ernest Chinonso Chianumba, Ashiata Yetunde Mustapha, Adelaide Yeboah Forkuo, “A Conceptual Framework for Enhancing Healthcare Data Security Using Blockchain and AI‬.” [Online]. Available: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=pZekPIgAAAAJ&pagesize=80&citation_for_view=pZekPIgAAAAJ:8k81kl-MbHgC‬

Downloads

Published

30-09-2024

Issue

Section

Research Articles

How to Cite

Designing a Data-Driven Clinical Audit Model for Quality Improvement in Healthcare Service Delivery. (2024). International Journal of Scientific Research in Science and Technology, 11(5), 718-735. https://doi.org/10.32628/IJSRST52310377