Automation-Enabled RFI/RFP Market Intelligence Platforms : Redefining Data-Driven Business Development in Global Pharmaceutical Markets

Authors

  • Ezichi Adanna Anokwuru Fisher College of Business, The Ohio State University, Columbus OH, USA Author
  • Agama Omachi Department of Economics, University of Ibadan, Ibadan Nigeria Author
  • Joy Onma Enyejo Author

DOI:

https://doi.org/10.32628/IJSRST54310301

Keywords:

Automation-enabled, Pharmaceutical, intelligenc, machine learning, Scalability and development

Abstract

This study examines the transformative role of automation-enabled RFI/RFP market intelligence platforms in enhancing data-driven business development within the global pharmaceutical sector. It explores the evolution of market intelligence, emphasizing the integration of advanced technologies such as artificial intelligence, machine learning, natural language processing, and robotic process automation to streamline data collection, processing, and analysis. The study highlights how these technologies improve operational efficiency, reduce time-to-market, and enable predictive analytics, competitive intelligence, and opportunity forecasting. By aggregating and analyzing structured and unstructured data from vendor submissions, regulatory filings, and global market reports, automated platforms facilitate strategic partnering, market expansion, and informed decision-making. The research also identifies key challenges, including data privacy and security, compliance with regulatory frameworks, integration with legacy systems, and ensuring accuracy, bias mitigation, and reliability of insights. Additionally, the study underscores the importance of cross-market intelligence and scalability, enabling firms to maintain operational efficiency while expanding globally. Recommendations for future studies and platform innovations focus on enhanced predictive capabilities, interoperable systems, interactive dashboards, and adaptive learning algorithms. Overall, the study demonstrates that automation-enabled RFI/RFP platforms redefine traditional workflows into strategic intelligence tools, driving competitive advantage and sustainable growth in the pharmaceutical industry.

Downloads

Download data is not yet available.

References

Ajayi, J. O., Omidiora, M. T., Addo, G. & Peter-Anyebe, A. C. (2019). Prosecutability of the Crime of Aggression: Another Declaration in A Treaty or an Achievable Norm? International Journal of Applied Research in Social Sciences Vol. 1(6), pp. 237-252, November, 2019. DOI: https://doi.org/10.51594/ijarss.v1i6.1973

Ajayi-Kaffi, O., & Buyurgan, N. (2024). Is agile methodology better than waterfall approach in enhancing effective communication in healthcare process improvement projects? International Journal of Research Publication and Reviews, 5(11), 3648–3651.

Akinleye, K. E., Jinadu, S. O., Onwusi, C. N., Omachi, A. & Ijiga, O. M. (2023). Integrating Smart Drilling Technologies with Real-Time Logging Systems for Maximizing Horizontal Wellbore Placement Precision International Journal of Scientific Research in Science, Engineering and Technology Volume 11, Issue 4 doi : https://doi.org/10.32628/IJSRST2411429 DOI: https://doi.org/10.32628/IJSRST2411429

Amebleh, J. & Okoh, O. F. (2023). Accounting for rewards aggregators under ASC 606/IFRS 15: Performance obligations, consideration payable to customers, and automated liability accruals at payments scale. Finance & Accounting Research Journal, Fair East Publishers Volume 5, Issue 12, 528-548 DOI: 10.51594/farj.v5i12.2003 DOI: https://doi.org/10.51594/farj.v5i12.2003

Amebleh, J. (2021). GAAP-Compliant Gift-Card Liability and Breakage Modeling : Survival/Hazard Methods and Hierarchical Bayesian Forecasts of Deferred-Revenue Recognition International Journal of Scientific Research in Science and Technology (IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011,Volume 8, Issue 5, pp.695-714, September-October-2021. Available at doi : https://doi.org/10.32628/IJSRST2152550 DOI: https://doi.org/10.32628/IJSRST2152550

Amebleh, J. & Omachi, A. (2022). Data Observability for High-Throughput Payments Pipelines: SLA Design, Anomaly Budgets, and Sequential Probability Ratio Tests for Early Incident Detection International Journal of Scientific Research in Science, Engineering and Technology Volume 9, Issue 4 576-591 DOI: https://doi.org/10.32628/IJSRSET221658 DOI: https://doi.org/10.32628/IJSRSET221658

Amebleh, J., & Igba, E. (2024). Causal Uplift for Rewards Aggregators: Doubly-Robust Heterogeneous Treatment-Effect Modeling with SQL/Python Pipelines and Real-Time Inference. International Journal of Scientific Research and Modern Technology, 3(5), 39–55. https://doi.org/10.38124/ijsrmt.v3i5.819 DOI: https://doi.org/10.38124/ijsrmt.v3i5.819

Amebleh, J., & Okoh, O. F. (2023). Explainable Risk Controls for Digital Health Payments: SHAP-Constrained Gradient Boosting with Policy-Based Access, Audit Trails, and Chargeback Mitigation. International Journal of Scientific Research and Modern Technology, 2(4), 13–28. https://doi.org/10.38124/ijsrmt.v2i4.746 DOI: https://doi.org/10.38124/ijsrmt.v2i4.746

Amebleh, J., & Omachi, A. (2023). Integrating Financial Planning and Payments Data Fusion for Essbase SAP BW Cohort Profitability LTV CAC Variance Analysis. International Journal of Scientific Research and Modern Technology, 2(4), 1–12. https://doi.org/10.38124/ijsrmt.v2i4.752 DOI: https://doi.org/10.38124/ijsrmt.v2i7.752

Amebleh, J., Igba, E. & Ijiga, O. M. (2021). Graph-Based Fraud Detection in Open-Loop Gift Cards: Heterogeneous GNNs, Streaming Feature Stores, and Near-Zero-Lag Anomaly Alerts International Journal of Scientific Research in Science, Engineering and Technology Volume 8, Issue 6 DOI: https://doi.org/10.32628/IJSRSET214418 DOI: https://doi.org/10.32628/IJSRSET214418

Bocas, J. (2024). Unveiling the Potential of Predictive Analytics in Healthcare https://digitalsalutem.com/predictive-analytics-in-healthcare/

Chaudhary, S., & Mehta, P. (2023). Automation-enabled RFI/RFP platforms and strategic partnerships in pharmaceuticals. Journal of Pharmaceutical Innovation, 18(10), 1112–1125. https://doi.org/10.1007/s12247-023-10012-3

Chowdhury, R., & Roy, S. (2023). Data sources and analytics in pharmaceutical business development. Journal of Pharmaceutical Policy and Practice, 16(1), 45. https://doi.org/10.1186/s40545-023-00568-9

Ding, X., & Li, Y. (2023). Evolution of digital intelligence in pharmaceutical business strategies. Journal of Pharmaceutical Innovation, 18(4), 527–540. https://doi.org/10.1007/s12247-023-09876-2

Gayawan, E. & Fagbohungbe, T. (2023). Continuous Spatial Mapping of the Use of Modern Family Planning Methods in Nigeria Global Social Welfare 10(2):1-11 DOI: 10.1007/s40609-023-00264-z DOI: https://doi.org/10.1007/s40609-023-00264-z

Ghosh, R., Kempf, D., Pufko, A., Barrios Martinez, L. F., Davis, C. M., & Sethi, S. (2020). Automation opportunities in pharmacovigilance: An industry survey. Pharmaceutical Medicine, 34(1), 7–18. https://doi.org/10.1007/s40290-019-00320-0 DOI: https://doi.org/10.1007/s40290-019-00320-0

Gupta, R., & Kumar, V. (2020). Reducing operational latency in pharma procurement through automation. Computers & Industrial Engineering, 146, 106701. https://doi.org/10.1016/j.cie.2020.106701 DOI: https://doi.org/10.1016/j.cie.2020.106701

Huanbutta, K. (2024). Artificial intelligence‑driven pharmaceutical industry. European Journal of Pharmacology, 958, 175342. https://doi.org/10.1016/j.ejphar.2024.175342

Huang, L., & Chen, W. (2020). Big data integration and storage for pharmaceutical R&D and market analysis. Computers in Industry, 119, 103234. https://doi.org/10.1016/j.compind.2020.103234

Huang, Y., & Li, F. (2020). Challenges of legacy system integration in pharma data management. Computers & Industrial Engineering, 150, 106894. https://doi.org/10.1016/j.cie.2020.106894 DOI: https://doi.org/10.1016/j.cie.2020.106894

Idoko, I. P., Ijiga, O. M., Akoh, O., Agbo, D. O., Ugbane, S. I., & Umama, E. E. (2024). Empowering sustainable power generation: The vital role of power electronics in California's renewable energy transformation. *World Journal of Advanced Engineering Technology and Sciences*, 11(1), 274-293. DOI: https://doi.org/10.30574/wjaets.2024.11.1.0058

Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Akoh, O., & Ileanaju, S. (2024). Harmonizing the voices of AI: Exploring generative music models, voice cloning, and voice transfer for creative expression.

Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Akoh, O., & Isenyo, G. (2024). Integrating superhumans and synthetic humans into the Internet of Things (IoT) and ubiquitous computing: Emerging AI applications and their relevance in the US context. *Global Journal of Engineering and Technology Advances*, 19(01), 006-036. DOI: https://doi.org/10.30574/gjeta.2024.19.1.0055

Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Ugbane, S. I., Akoh, O., & Odeyemi, M. O. (2024). Exploring the potential of Elon Musk's proposed quantum AI: A comprehensive analysis and implications. *Global Journal of Engineering and Technology Advances*, 18(3), 048-065. DOI: https://doi.org/10.30574/gjeta.2024.18.3.0037

Idoko, I. P., Ijiga, O. M., Harry, K. D., Ezebuka, C. C., Ukatu, I. E., & Peace, A. E. (2024). Renewable energy policies: A comparative analysis of Nigeria and the USA.

Idika, C. N. (2022). Lightweight Authentication Mechanisms for Securing Wearable Medical Devices in Body Area Networks Global Journal of Multidisciplinary Studies Volume 11, Issue 9, https://doi.org/10.5281/zenodo.17519630

Ihimoyan, M. K., Ibokette, A. I., Olumide, F. O., Ijiga, O. M., & Ajayi, A. A. (2024). The Role of AI-Enabled Digital Twins in Managing Financial Data Risks for Small-Scale Business Projects in the United States. International Journal of Scientific Research and Modern Technology, 3(6), 12–40. https://doi.org/10.5281/zenodo.14598498

Ijiga, A. C., Aboi, E. J., Idoko, P. I., Enyejo, L. A., & Odeyemi, M. O. (2024). Collaborative innovations in Artificial Intelligence (AI): Partnering with leading U.S. tech firms to combat human trafficking. Global Journal of Engineering and Technology Advances, 2024,18(03), 106-123. https://gjeta.com/sites/default/files/GJETA-2024-0046.pdf DOI: https://doi.org/10.30574/gjeta.2024.18.3.0046

Ijiga, A. C., Abutu E. P., Idoko, P. I., Ezebuka, C. I., Harry, K. D., Ukatu, I. E., & Agbo, D. O. (2024). Technological innovations in mitigating winter health challenges in New York City, USA. International Journal of Science and Research Archive, 2024, 11(01), 535–551.• https://ijsra.net/sites/default/files/IJSRA-2024-0078.pdf DOI: https://doi.org/10.30574/ijsra.2024.11.1.0078

Ijiga, A. C., Abutu, E. P., Idoko, P. I., Agbo, D. O., Harry, K. D., Ezebuka, C. I., & Umama, E. E. (2024). Ethical considerations in implementing generative AI for healthcare supply chain optimization: A cross-country analysis across India, the United Kingdom, and the United States of America. International Journal of Biological and Pharmaceutical Sciences Archive, 2024, 07(01), 048–063. https://ijbpsa.com/sites/default/files/IJBPSA-2024-0015.pdf DOI: https://doi.org/10.53771/ijbpsa.2024.7.1.0015

Ijiga, A. C., Enyejo, L. A., Odeyemi, M. O., Olatunde, T. I., Olajide, F. I & Daniel, D. O. (2024). Integrating community-based partnerships for enhanced health outcomes: A collaborative model with healthcare providers, clinics, and pharmacies across the USA. Open Access Research Journal of Biology and Pharmacy, 2024, 10(02), 081–104. https://oarjbp.com/content/integrating-community-based-partnerships-enhanced-health-outcomes-collaborative-model DOI: https://doi.org/10.53022/oarjbp.2024.10.2.0015

Ijiga, A. C., Olola, T. M., Enyejo, L. A., Akpa, F. A., Olatunde, T. I., & Olajide, F. I. (2024). Advanced surveillance and detection systems using deep learning to combat human trafficking. Magna Scientia Advanced Research and Reviews, 2024, 11(01), 267–286. https://magnascientiapub.com/journals/msarr/sites/default/files/MSARR-2024-0091.pdf. DOI: https://doi.org/10.30574/msarr.2024.11.1.0091

Ijiga, O. M., Ifenatuora, G. P., & Olateju, M. (2021). Bridging STEM and Cross-Cultural Education: Designing Inclusive Pedagogies for Multilingual Classrooms in Sub Saharan Africa. JUL 2021 | IRE Journals | Volume 5 Issue 1 | ISSN: 2456-8880.

Ijiga, O. M., Ifenatuora, G. P., & Olateju, M. (2021). Digital Storytelling as a Tool for Enhancing STEM Engagement: A Multimedia Approach to Science Communication in K-12 Education. International Journal of Multidisciplinary Research and Growth Evaluation. Volume 2; Issue 5; September-October 2021; Page No. 495-505. https://doi.org/10.54660/.IJMRGE.2021.2.5.495-505 DOI: https://doi.org/10.54660/.IJMRGE.2021.2.5.495-505

Ijiga, O. M., Ifenatuora, G. P., & Olateju, M. (2022). AI-Powered E-Learning Platforms for STEM Education: Evaluating Effectiveness in Low Bandwidth and Remote Learning Environments. International Journal of Scientific Research in Computer Science, Engineering and Information Technology ISSN : 2456-3307 Volume 8, Issue 5 September-October-2022 Page Number : 455-475 https://doi.org/10.32628/CSEIT23902187 DOI: https://doi.org/10.32628/CSEIT23902187

Ijiga, O. M., Ifenatuora, G. P., & Olateju, M. (2023). STEM-Driven Public Health Literacy : Using Data Visualization and Analytics to Improve Disease Awareness in Secondary Schools. International Journal of Scientific Research in Science and Technology. Volume 10, Issue 4 July-August-2023 Page Number : 773-793. https://doi.org/10.32628/IJSRST2221189 DOI: https://doi.org/10.32628/IJSRST2221189

James, U. U., Idika, C. N., & Enyejo, L. A. (2023). Zero Trust Architecture Leveraging AI-Driven Behavior Analytics for Industrial Control Systems in Energy Distribution Networks, International Journal of Scientific Research in Computer Science, Engineering and Information Technology Volume 9, Issue 4 doi : https://doi.org/10.32628/CSEIT23564522 DOI: https://doi.org/10.32628/CSEIT23564522

Jinadu, S. O., Akinleye, K. E., & Ijiga, O. M. (2024).Deployment of Geological Co₂ Sequestration with Proprietary Injection Techniques for Oil Yield Optimization and Energy Independence International Journal of Scientific Research in Science, Engineering and Technology Volume 11, Issue 6 doi : https://doi.org/10.32628/IJSRSET2512162 DOI: https://doi.org/10.32628/IJSRSET2512162

Khan, M., & Verma, S. (2020). Risk management and regulatory compliance in pharmaceutical procurement. Computers & Industrial Engineering, 148, 106815. https://doi.org/10.1016/j.cie.2020.106815

Khan, S., & Ahmed, R. (2023). Data preprocessing techniques for pharmaceutical market intelligence. Journal of Biomedical Informatics, 137, 104203. https://doi.org/10.1016/j.jbi.2023.104203

Kumar, A., & Verma, S. (2023). Automation in pharmaceutical procurement: Enhancing efficiency and strategic decision-making. Journal of Business Research, 157, 113482. https://doi.org/10.1016/j.jbusres.2023.113482

Kumar, S., & Mehta, R. (2023). Data visualization and dashboards in pharmaceutical market intelligence. Journal of Pharmaceutical Innovation, 18(8), 901–915. https://doi.org/10.1007/s12247-023-09934-5

Li, H., & Zhang, Y. (2020). Enhancing pharmaceutical decision-making through interactive dashboards and analytics. Computers & Industrial Engineering, 145, 106623. https://doi.org/10.1016/j.cie.2020.106623 DOI: https://doi.org/10.1016/j.cie.2020.106623

Li, J., & Chen, H. (2020). Cybersecurity and regulatory challenges in pharmaceutical data management. Computers & Industrial Engineering, 149, 106872. https://doi.org/10.1016/j.cie.2020.106872 DOI: https://doi.org/10.1016/j.cie.2020.106872

Liang, H., & Chen, J. (2024). AI-driven RFI/RFP platforms and business development in global pharma. Computers & Industrial Engineering, 179, 109443. https://doi.org/10.1016/j.cie.2024.109443

Liu, Y., & Zhao, X. (2020). Ensuring data quality in pharmaceutical RFI/RFP processes: Methods and best practices. Computers in Industry, 119, 103243. https://doi.org/10.1016/j.compind.2020.103243 DOI: https://doi.org/10.1016/j.compind.2020.103243

Miller, T., & Jackson, P. (2020). Leveraging global data streams for pharmaceutical market intelligence. Pharmaceutical Medicine, 34(2), 109–121. https://doi.org/10.1007/s40290-020-00340-5

Ocharo, D. O. & Omachi, A. (2022). Optimization of Microgrid-Controlled Chiller Plants for Data Center Cooling in the Northeastern United States International Journal of Scientific Research in Science and Technology(IJSRST), Volume 9, Issue 3, pp.865-880, May-June-2022. Available at doi : https://doi.org/10.32628/IJSRST229345 DOI: https://doi.org/10.32628/IJSRST229345

Ogunlana, Y. S. & Omachi, A. (2024). Countering Political Misinformation in the US through Instructional Media Literacy: A Policy and Design Perspective International Journal of Scientific Research in Humanities and Social Sciences https://doi.org/10.32628/IJSRSSH243668 DOI: https://doi.org/10.32628/IJSRSSH243668

Ogunlana, Y. S. & Peter-Anyebe, A. C. (2024). Policy by Design : Inclusive Instructional Models for Advancing Neurodiversity Equity in Public Programs International Journal of Scientific Research in Humanities and Social Sciences Volume 1, Issue 1, 243-261 https://doi.org/10.32628/IJSRSSH243564 DOI: https://doi.org/10.32628/IJSRSSH243564

Oyekan, M., Igba, E. & Jinadu, S. O.. (2024). Building Resilient Renewable Infrastructure in an Era of Climate and Market Volatility International Journal of Scientific Research in Humanities and Social Sciences Volume 1, Issue 1 https://doi.org/10.32628/IJSRSSH243563 DOI: https://doi.org/10.32628/IJSRSSH243563

Patel, D., & Singh, R. (2023). Real-time data management challenges in pharmaceutical market intelligence. Journal of Pharmaceutical Innovation, 18(5), 612–625. https://doi.org/10.1007/s12247-023-09812-8

Patel, N., & Sharma, K. (2020). Implementing RPA in healthcare and pharma industries: Opportunities and challenges. Computers in Industry, 118, 103216. https://doi.org/10.1016/j.compind.2020.103216

Patel, R., & Desai, S. (2023). Competitive intelligence in pharmaceutical R&D and business strategy. Journal of Pharmaceutical Innovation, 18(7), 812–825. https://doi.org/10.1007/s12247-023-09901-2

Patel, R., & Mehta, A. (2020). Data accuracy and bias mitigation in automated RFI/RFP analytics. Computers & Industrial Engineering, 151, 106931. https://doi.org/10.1016/j.cie.2020.106931 DOI: https://doi.org/10.1016/j.cie.2020.106931

Patel, S., & Kumar, V. (2020). Natural language processing and machine learning in healthcare data analysis: A review. Computers in Biology and Medicine, 122, 103810. https://doi.org/10.1016/j.compbiomed.2020.103810 DOI: https://doi.org/10.1016/j.compbiomed.2020.103810

Patel, S., & Rao, V. (2023). Integrating automation platforms with legacy systems in pharmaceutical companies. Journal of Pharmaceutical Innovation, 19(2), 214–228. https://doi.org/10.1007/s12247-023-10145-1

Rao, P., & Kumar, V. (2020). Data-driven forecasting models for pharmaceutical market intelligence. Computers & Industrial Engineering, 143, 106435. https://doi.org/10.1016/j.cie.2020.106435 DOI: https://doi.org/10.1016/j.cie.2020.106435

Reddy, P., & Srinivasan, K. (2023). Data privacy and regulatory compliance in automated pharmaceutical systems. Journal of Pharmaceutical Innovation, 19(1), 102–115. https://doi.org/10.1007/s12247-023-10112-8

Santos, R., & Almeida, P. (2024). AI-driven market intelligence platforms in pharmaceutical R&D. Technovation, 123, 102754. https://doi.org/10.1016/j.technovation.2024.102754

Sharma, P., & Verma, A. (2023). Automation in pharmaceutical RFI/RFP processes: Impact on efficiency and time-to-market. Journal of Pharmaceutical Innovation, 18(9), 1023–1035. https://doi.org/10.1007/s12247-023-09978-9

Sharma, V., & Patel, R. (2023). Automation in RFI/RFP workflows: Enhancing compliance and mitigating risk in pharmaceuticals. Journal of Pharmaceutical Innovation, 18(11), 1201–1214. https://doi.org/10.1007/s12247-023-10056-7

Singh, A., & Mehta, R. (2023). Robotic process automation in pharmaceutical procurement: Enhancing efficiency and compliance. Journal of Business Research, 158, 113607. https://doi.org/10.1016/j.jbusres.2023.113607

Singh, M., & Rao, P. (2020). Benchmarking techniques for market intelligence in the pharmaceutical sector. Computers & Industrial Engineering, 145, 106589. https://doi.org/10.1016/j.cie.2020.106589

Sultana, A., Maseera, R., Rahamanulla, A., & Misiriya, A. (2023). Emerging of artificial intelligence and technology in pharmaceuticals: Review. Future Journal of Pharmaceutical Sciences, 9, 65. https://doi.org/10.1186/s43094-023-00517-w DOI: https://doi.org/10.1186/s43094-023-00517-w

Ukpe, I. E., Atala, O. & Smith, O. (2023). Artificial Intelligence and Machine Learning in English Education: Cultivating Global Citizenship in a Multilingual World, Vol. 9 Issue 4. Artificial Intelligence and Machine Learning in English Education: Cultivating Global Citizenship in a Multilingual World | Communication In Physical Sciences

Uzhakova, N. (2024). Data‑driven enterprise architecture for pharmaceutical R&D. Operations, 4(2), 17. https://doi.org/10.3390/oper4-2-17 DOI: https://doi.org/10.3390/digital4020017

Verma, R., & Singh, A. (2020). Market intelligence and business development strategies in global pharma. Computers & Industrial Engineering, 147, 106758. https://doi.org/10.1016/j.cie.2020.106758

Wang, T., & Li, J. (2023). Predictive analytics in pharmaceutical business development: Forecasting market opportunities. Journal of Pharmaceutical Innovation, 18(6), 701–715. https://doi.org/10.1007/s12247-023-09876-5

Zhang, L., & Kumar, S. (2023). Ensuring reliability and minimizing bias in AI-driven pharmaceutical market intelligence. Journal of Pharmaceutical Innovation, 19(3), 312–326. https://doi.org/10.1007/s12247-023-10178-4

Zhang, Y., & Wang, H. (2023). Artificial intelligence applications in pharmaceutical market intelligence: Trends and opportunities. Journal of Pharmaceutical Innovation, 18(3), 411–425. https://doi.org/10.1007/s12247-023-09798-1

Downloads

Published

26-05-2024

Issue

Section

Research Articles

How to Cite

[1]
Ezichi Adanna Anokwuru, Agama Omachi, and Joy Onma Enyejo, Trans., “Automation-Enabled RFI/RFP Market Intelligence Platforms : Redefining Data-Driven Business Development in Global Pharmaceutical Markets”, Int J Sci Res Sci & Technol, vol. 11, no. 3, pp. 1016–1036, May 2024, doi: 10.32628/IJSRST54310301.